2025 2025 2024 2024 2023 2023 2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 0 0 2 2 4 4 6 6 8 8 10 10
Now showing 1 - 10 of 28
No Thumbnail Available
Publication

Impacts of soil erosion and climate change on the built heritage of the Pambamarca Fortress Complex in northern Ecuador

2023 , Santos F. , Calle N. , Bonilla S. , Sarmiento F , Herrnegger M.

The Pambamarca fortress complex in northern Ecuador is a cultural and built heritage with 18 prehispanic fortresses known as Pucaras. They are mostly located on the ridge of the Pambamarca volcano, which is severely affected by erosion. In this research, we implemented a multiscale methodology to identify sheet, rill and gully erosion in the context of climate change for the prehistoric sites. In a first phase, we coupled the Revised Universal Soil Loss Equation (RUSLE) and four CMIP6 climate models to evaluate and prioritize which Pucaras are prone to sheet and rill erosion, after comparing historical and future climate scenarios. Then, we conducted field visits to collect geophotos and soil samples for validation purposes, as well as drone flight campaigns to derive high resolution digital elevation models and identify gully erosion with the stream power index. Our erosion maps achieved an overall accuracy of 0.75 when compared with geophotos and correlated positively with soil samples sand fraction. The Pucaras evaluated with the historical climate scenario obtained erosion rates ranging between 0 and 20 ton*ha-1*yr-1. These rates also varied from -15.7% to 39.1% for four future climate change models that reported extreme conditions. In addition, after identifying and overflying six Pucaras that showed the highest erosion rates in the future climate models, we mapped their gully-prone areas that represented between 0.9% and 3.2% of their analyzed areas. The proposed methodology allowed us to observe how the design of the Pucaras and their concentric terraces have managed to reduce gully erosion, but also to notice the pressures they suffer due to their susceptibility to erosion, anthropic pressures and climate change. To address this, we suggest management strategies to guide the protection of this cultural and built heritage landscapes. © 2023 Santos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

No Thumbnail Available
Publication

Central parks as air quality oases in the tropical Andean city of Quito

2024 , Zalakeviciute R. , Bonilla Bedoya, Santiago , Mejia Coronel D. , Bastidas M. , Buenano A. , Diaz-Marquez A.

Urban ecosystem is an intricate agglomeration of human, fauna and flora populations coexisting in natural and artificial environments. As a city develops and expands over time; it may become unbalanced, affecting the quality of ecosystem and urban services and leading to environmental and health problems. Fine particulate matter (particulate matter with aerodynamic diameter ≤2.5 μm - PM2.5) is the air pollutant posing the greatest risk to human health. Quito, the capital city of Ecuador, exhibits a high occurrence of exposure to unhealthy levels of PM2.5 due to a combination of natural and social variables. This study focused on three central parks of this high elevation city, investigating the spatial distribution of PM2.5 concentrations. The particle pollution was then modeled using Normalized Difference Vegetation Index (NDVI). Hazardous instantaneous levels of PM2.5 were consistently found on the edges of the parks along busy avenues, which are also the most frequented areas. This raises concerns about both short- and long-term exposures to toxic traffic pollution in recreational areas within urban dwellings in the global south. The NDVI model successfully predicted the spatial concentrations of PM2.5 in a smaller urban park, suggesting its potential application in other cities. However, further research is required to validate its effectiveness. © 2024 The Authors

No Thumbnail Available
Publication

Calculating minimum safety distance against wildfires at the wildland-urban interface in Chile and Spain

2022 , Castillo Soto, M.E. , Molina Martínez, J.R. , Bonilla Bedoya, Santiago , Moreno García, R.A.

Wildfires in the urban-forest interface constitute a civil protection emergency, causing considerable personal injury and damage to properties. The potential impacts of wildfires on buildings can be minimized by reducing the surrounding fuel and the use of structural materials with low flammability. However, the costs associated with implementing these actions and the responsibility for maintenance usually present conflicts with the property owners. This study aimed to identify minimum safety distances in wildland-urban interfaces within priority areas. The priority areas were identified based on the integration of fire risk and fuel hazard. Radiant heat is a variable in the behavior of fire that directly influences the definition of safety distances. In this research the radiant heat transfer was calculated based on the potential fire behavior for each study area. A comparative study of the horizontal heat transfer method and the radiant heat flux model was carried out. The horizontal heat transfer method indicated the highest vegetation-free distances, ranging from 23 m to 32 m. Some safety distances were validated using experimental fires and wildfires. The findings from the experimental fires and wildfires emphasize the need for a progressive fuel load reduction to mitigate radiant heat transfer. This may include both the removal of surface fuel and removal of trees to mitigate against crown fires. Our findings provide relevant information for decision-making on the effectiveness and efficiency of safety distances at the wildland-urban interface. © 2022 The Author(s)

No Thumbnail Available
Publication

Distinguishing original and non-original stands at the zhanjiang mangrove national nature reserve (P.r. china): Remote sensing and gis for conservation and ecological research

2021 , Durango-Cordero J. , Satyanarayana B. , Chan J.C.-W. , Bogaert J. , Dahdouh-Guebas F.

The present research developed a novel methodological framework to differentiate natural mangrove stands (i.e., original), from stands which were planted and stands naturally established after interaction between planted and non-planted stands (e.g., through pollination, i.e., non-original). Ground-truth and remote sensing data were collected for Zhanjiang Mangrove National Nature Reserve (ZMNNR) in P.R. China. First, satellite images of Corona (1967) and GeoEye-1 (2009) were overlaid to identify original (1967) and non-original (2009) mangrove stands. Second, in both stands a total of 75 in situ plots (25 m2) were measured for ground-truthing of tree structural parameters including height, density, basal area and Complexity Index (CI). From temporal satellite data, we identify 236.12 ha of original mangrove and 567.88 ha of non-original mangrove in the reserve. Averaged measurements of the original mangrove stands, i.e., stem density (1164 nos. 0.1 ha−1), basal area (90.3 m2 0.1 ha−1) and CI (100.59), indicated that they were in a state of maturity and less disturbed compared to the non-original mangroves (density, 1241 nos. 0.1 ha−1; basal area, 4.92 m2 0.1 ha−1 and CI, 55.65). The Kruskal–Wallis test showed significant differentiation between the original and non-original mangrove tree structural parameters: Kandelia obovata’s density, X2 = 34.78, d.f. = 1, p = 0.001; basal area, X2 = 108.15, d.f. = 1, p = 0.001; Rizhopora stylosa’s density, X2 = 64.03, d.f. = 1, p = 0.001; basal area, X2 = 117.96, d.f. = 1, p = 0.001. The latter is also evident from the clustering plots generated from the Principal Component Analysis (PCA). Vegetation dynamics at the ZMNNR also enabled us to compare the species composition and distribution patterns with other Indo-West Pacific regions. Overall, the present study not only highlights the advantage of >50 years old satellite data but also provide a benchmark for future ecological research, conservation and management of the ZMNNR. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

No Thumbnail Available
Publication

War Impact on Air Quality in Ukraine

2022 , Zalakeviciute, R. , Mejia, D. , Alvarez, H. , Bermeo, X. , Bonilla Bedoya, Santiago , Rybarczyk, Y. , Lamb, B.

In the light of the 21st century, after two devastating world wars, humanity still has not learned to solve their conflicts through peaceful negotiations and dialogue. Armed conflicts, both international and within a single state, still cause devastation, displacement, and death all over the world. Not to mention the consequences that war has on the environment. Due to a lack of published research about war impact on modern air quality, this work studies air pollution evolution during the first months of the Russian-Ukrainian conflict. Satellite images of NO2, CO, O3, SO2, and PM2.5 over Ukrainian territory and PM2.5 land monitoring data for Kyiv were analyzed. The results showed that NO2 and PM2.5 correlated the most with war activities. CO and O3 levels increased, while SO2 concentrations reduced four-fold as war intensified. Drastic increases in pollution (especially PM2.5) from bombing and structural fires, raise additional health concerns, which might have serious implications for the exposed local and regional populations. This study is an invaluable proof of the impact any armed conflict has on air quality, the population, and environment. © 2022 by the authors.

No Thumbnail Available
Publication

The effect of national protest in Ecuador on PM pollution

2021 , Zalakeviciute R. , Alexandrino K. , Mejia D. , Bastidas M.G. , Oleas N.H. , Gabela D. , Chau P.N. , Bonilla Bedoya, Santiago , Diaz V. , Rybarczyk Y.

Particulate matter (PM) accounts for millions of premature deaths in the human population every year. Due to social and economic inequality, growing human dissatisfaction manifests in waves of strikes and protests all over the world, causing paralysis of institutions, services and circulation of transport. In this study, we aim to investigate air quality in Ecuador during the national protest of 2019, by studying the evolution of PM2.5 (PM ≤ 2.5 µm) concentrations in Ecuador and its capital city Quito using ground based and satellite data. Apart from analyzing the PM2.5 evolution over time to trace the pollution changes, we employ machine learning techniques to estimate these changes relative to the business-as-usual pollution scenario. In addition, we present a chemical analysis of plant samples from an urban park housing the strike. Positive impact on regional air quality was detected for Ecuador, and an overall − 10.75 ± 17.74% reduction of particulate pollution in the capital during the protest. However, barricade burning PM peaks may contribute to a release of harmful heavy metals (tire manufacture components such as Co, Cr, Zn, Al, Fe, Pb, Mg, Ba and Cu), which might be of short- and long-term health concerns. © 2021, The Author(s).

No Thumbnail Available
Publication

Copper and Temperature Interactions Induce Differential Physiological and Metal Exclusion Responses in the Model Brown Macroalga Ectocarpus

2025 , Santillán Sarmiento, Alex , Paula S. M. Celis-Plá , A. John Moody , Claudio A. Saez , Murray T. Brown

The toxic effects of copper (Cu) excess in brown macroalgae have been well characterized. However, the interactive effects of increased temperatures, associated with climate change, and Cu stress on these macrophytes remain almost unexplored. In this study, we exposed the model brown seaweed Ectocarpus to different Cu concentrations (0, 0.8, 1.6, and 3.2 μM) at two different temperatures (15 and 25 °C). Relative growth rates decreased at 25 °C for the two highest Cu concentrations after 8 days of exposure, but a contrasting pattern was observed in the photosynthetic maximum quantum yield (Fv/Fm) and photosynthetic efficiency (α), where reductions were observed at 15 °C for the same Cu concentrations. Although no differences among treatments were observed for chlorophyll a (Chla) and chlorophyll c (Chlc), a reduction in concentration of the accessory pigment fucoxanthin (Fx) was only observed at 15 °C in all Cu treatments. Interestingly, at 25 °C, 20.1% less total Cu (intracellular + extracellularly bound) accumulated compared to 15 °C upon exposure to 3.2 μM Cu. Likewise, 33.1 and 23.8% less Cu accumulated intracellularly at 25 °C after exposure to 1.6 μM and 3.2 μM Cu, respectively. Additionally, at 25 °C about half of the Cu ions accumulated intracellularly and half extracellularly compared to 15 °C, where Cu accumulated mostly intracellularly at the two highest Cu concentrations. The results presented here provide valuable information to better understand the interactive effects of increased temperature and excess Cu in the stress response of Ectocarpus, suggesting that increased temperature helps to offset the negative impacts of exposure to high Cu concentrations.

No Thumbnail Available
Publication

Risk assessment of unlined oil pits leaking into groundwater in the Ecuadorian Amazon: A modified GIS-DRASTIC approach

2022 , Durango-Cordero J. , Saqalli M. , Ferrant S. , Bonilla S. , Maurice L. , Arellano P. , Elger A.

This study evaluates the risk of groundwater contamination from unlined oil pits, in the Northern Ecuadorian Amazon (NEA). Applying spatial analysis, several maps were provided for its integration in land use planning, public health improvement and future site-specific investigations. Two main maps were produced: (1) a vulnerability indexed map using a modified DRASTIC model and (2) a hazard map based on the past (1995–1997) and present (2018) contamination using a weighted density equation. The hazard was derived from hydrocarbon contained in oil pits associated with a cost-distance analysis to obtain different maximum distance ranges (MDR), to model the surface of potentially impacted groundwater. The results indicate a total calculated hydrocarbons of 39 052 tons. A MDR from 500–10 000 km was retained to map aquifers at risk, the maximum surface potentially at risk covers 13% of the NEA, while 83% of the area represents low to medium-low vulnerability. This study led to several recommendations, such as the level of suitability of the available information, and what gaps should be filled to improve future research. A surface of 271–766.5 km in the 500-2000-m distance range should be prioritised for finer scale risk assessment. © 2021 Elsevier Ltd

No Thumbnail Available
Publication

Evaluating night-time light sources and correlation with socio-economic development using high-resolution multi-spectral Jilin-1 satellite imagery of Quito, Ecuador

2023 , Watson C.S. , Elliott J.R. , Córdova M. , Menoscal J. , Bonilla Bedoya, Santiago

Artificial light at night (ALAN) has positive and negative effects on social, economic, environmental, and ecological systems, and will increase with urban expansion. In this study, we used a multi-spectral 1.5 m resolution night-time acquisition from a Jilin-1 satellite over the city of Quito, Ecuador, to evaluate spatial lighting patterns in an expanding and topography complex-built environment. We demonstrated a requirement for robust georeferencing and orthorectification due to the complex topography, with errors on the order of 4–6 pixels (5.8–8.4 m CE95). We also quantified differences in observed brightness due to the image acquisition and local geometry. Street light type was distinguishable between high-pressure sodium (HPS) and light emitting diode (LED) sources (F1-score = 0.72–0.83) using a shark random forest decision tree approach. Additionally, street lights could be located within 10 m (F1-score = 0.71) with balanced omissions and commissions. Spatial trends revealed that the road network was the dominant source of illumination, accounting for 45% of illuminated pixels, whereas built-up areas accounted for 23%. Overall, 68% of all illuminated pixels were on or within 10 m of the road. Higher socio-economic development was associated with higher proportions of LED lighting, greater road network lighting and density of street lights, higher overall radiance for built-up areas and the road network, and greater coverage and illumination of designated green spaces. The broad impacts of ALAN mean that addressing the causes and consequences of lighting inequalities is a complex issue. Nonetheless, Jilin-1 night-time imagery offers a low-cost way to map and monitor light sources at high-resolution that will be beneficial to city-planners and progressing Sustainable Development Goals. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

No Thumbnail Available
Publication

Socioecological system and potential deforestation in Western Amazon forest landscapes

2018 , Bonilla Bedoya, Santiago , Estrella-Bastidas A. , Molina J.R. , Herrera M.Á.

The ecosystem services provided by tropical forests are affected by deforestation. Territorial management strategies aim to prevent and mitigate forest loss. Therefore, modeling potential land use changes is important for forest management, monitoring, and evaluation. This study determined whether there are relationships between forest vulnerability to deforestation (potential deforestation distribution) and the forest management policies applied in the Ecuadorian Amazon. Proxy and underlying variables were used to construct a statistical model, based on the principle of maximum entropy that could predict potential land use changes. Entropy can be seen as a measure of uncertainty for a density function. Receiver operating characteristics (ROC) analysis and the Jackknife Test were used to validate the model. The importance of input variables in the model was determined through: Percent Contribution (PC) and Permutation Importance (PI). The results were compared with prevailing regional forest management strategies. The socioeconomic variables that provided the largest amount of information in the overall model (AUC = 0.81) and that showed most of the information not present in other variables were: “Protected areas-Intangible zone” (PC = 24%, PI = 12.4%), “timber harvesting programs” (PC = 21.7%, PI = 4.7%), “road network” (PC = 18.9%, PI = 7.7%), and “poverty rate” (PC = 3.7%, PI = 6.1%). Also, the biophysical variable “temperature” (PC = 7,9%, PI = 22.3%) provided information in the overall model. The results suggested the need for changes in forest management strategies. Forest policies and management plans should consider integrating and strengthening protected areas and intangible zones, as well as restricting timber harvesting in native forest and establishing forest areas under permanent management. Furthermore, the results also suggested that financial incentive programs to reduce deforestation have to be evaluated because their present distribution is inefficient. In this context, conservation incentive plans need to be revised so that they focus on areas at deforestation risk. © 2018 Elsevier B.V.