2024 2024 2023 2023 2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 0 0 2 2 4 4 6 6 8 8 10 10
Now showing 1 - 10 of 27
No Thumbnail Available
Publication

Calculating minimum safety distance against wildfires at the wildland-urban interface in Chile and Spain

2022 , Castillo Soto, M.E. , Molina Martínez, J.R. , Bonilla Bedoya, Santiago , Moreno García, R.A.

Wildfires in the urban-forest interface constitute a civil protection emergency, causing considerable personal injury and damage to properties. The potential impacts of wildfires on buildings can be minimized by reducing the surrounding fuel and the use of structural materials with low flammability. However, the costs associated with implementing these actions and the responsibility for maintenance usually present conflicts with the property owners. This study aimed to identify minimum safety distances in wildland-urban interfaces within priority areas. The priority areas were identified based on the integration of fire risk and fuel hazard. Radiant heat is a variable in the behavior of fire that directly influences the definition of safety distances. In this research the radiant heat transfer was calculated based on the potential fire behavior for each study area. A comparative study of the horizontal heat transfer method and the radiant heat flux model was carried out. The horizontal heat transfer method indicated the highest vegetation-free distances, ranging from 23 m to 32 m. Some safety distances were validated using experimental fires and wildfires. The findings from the experimental fires and wildfires emphasize the need for a progressive fuel load reduction to mitigate radiant heat transfer. This may include both the removal of surface fuel and removal of trees to mitigate against crown fires. Our findings provide relevant information for decision-making on the effectiveness and efficiency of safety distances at the wildland-urban interface. © 2022 The Author(s)

No Thumbnail Available
Publication

Exploring Wardriving Potential in the Ecuadorian Amazon for Indirect Data Collection

2021 , Santos F. , Pesantes P. , Bonilla Bedoya, Santiago

Digital inclusion in the Ecuadorian amazon is known as a problem, which intensified with the pandemic. Since social distance is now the norm, we constructed a WiFi access point (WAP) scanner to map and analyze its data. We correlated it with ancillary geoinformation to observe its potential and limitations as a method for indirect data collection. Our result indicate that WAP correlate weakly but positively with nightlight, young population, accessibility to economical centres, and negatively with slope. Moreover, we differentiated vulnerability naming patters from Service Set Identifiers (SSDI) and differentiated the number of WAPs according to land cover for differentiate urban from rural areas. This output is now offering increasing applications to get updated rought estimates of internet activity and indirectly correlations to socio-economic conditions, technology practices, and opportunities for natural language processing. Therefore, we conclude that wardriving offer interesting opportunities for mapping social data but also concerns as an indirect data collection method. © Published under licence by IOP Publishing Ltd.

No Thumbnail Available
Publication

Impacts of soil erosion and climate change on the built heritage of the Pambamarca Fortress Complex in northern Ecuador

2023 , Santos F. , Calle N. , Bonilla S. , Sarmiento F , Herrnegger M.

The Pambamarca fortress complex in northern Ecuador is a cultural and built heritage with 18 prehispanic fortresses known as Pucaras. They are mostly located on the ridge of the Pambamarca volcano, which is severely affected by erosion. In this research, we implemented a multiscale methodology to identify sheet, rill and gully erosion in the context of climate change for the prehistoric sites. In a first phase, we coupled the Revised Universal Soil Loss Equation (RUSLE) and four CMIP6 climate models to evaluate and prioritize which Pucaras are prone to sheet and rill erosion, after comparing historical and future climate scenarios. Then, we conducted field visits to collect geophotos and soil samples for validation purposes, as well as drone flight campaigns to derive high resolution digital elevation models and identify gully erosion with the stream power index. Our erosion maps achieved an overall accuracy of 0.75 when compared with geophotos and correlated positively with soil samples sand fraction. The Pucaras evaluated with the historical climate scenario obtained erosion rates ranging between 0 and 20 ton*ha-1*yr-1. These rates also varied from -15.7% to 39.1% for four future climate change models that reported extreme conditions. In addition, after identifying and overflying six Pucaras that showed the highest erosion rates in the future climate models, we mapped their gully-prone areas that represented between 0.9% and 3.2% of their analyzed areas. The proposed methodology allowed us to observe how the design of the Pucaras and their concentric terraces have managed to reduce gully erosion, but also to notice the pressures they suffer due to their susceptibility to erosion, anthropic pressures and climate change. To address this, we suggest management strategies to guide the protection of this cultural and built heritage landscapes. © 2023 Santos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

No Thumbnail Available
Publication

Socioecological system and potential deforestation in Western Amazon forest landscapes

2018 , Bonilla Bedoya, Santiago , Estrella-Bastidas A. , Molina J.R. , Herrera M.Á.

The ecosystem services provided by tropical forests are affected by deforestation. Territorial management strategies aim to prevent and mitigate forest loss. Therefore, modeling potential land use changes is important for forest management, monitoring, and evaluation. This study determined whether there are relationships between forest vulnerability to deforestation (potential deforestation distribution) and the forest management policies applied in the Ecuadorian Amazon. Proxy and underlying variables were used to construct a statistical model, based on the principle of maximum entropy that could predict potential land use changes. Entropy can be seen as a measure of uncertainty for a density function. Receiver operating characteristics (ROC) analysis and the Jackknife Test were used to validate the model. The importance of input variables in the model was determined through: Percent Contribution (PC) and Permutation Importance (PI). The results were compared with prevailing regional forest management strategies. The socioeconomic variables that provided the largest amount of information in the overall model (AUC = 0.81) and that showed most of the information not present in other variables were: “Protected areas-Intangible zone” (PC = 24%, PI = 12.4%), “timber harvesting programs” (PC = 21.7%, PI = 4.7%), “road network” (PC = 18.9%, PI = 7.7%), and “poverty rate” (PC = 3.7%, PI = 6.1%). Also, the biophysical variable “temperature” (PC = 7,9%, PI = 22.3%) provided information in the overall model. The results suggested the need for changes in forest management strategies. Forest policies and management plans should consider integrating and strengthening protected areas and intangible zones, as well as restricting timber harvesting in native forest and establishing forest areas under permanent management. Furthermore, the results also suggested that financial incentive programs to reduce deforestation have to be evaluated because their present distribution is inefficient. In this context, conservation incentive plans need to be revised so that they focus on areas at deforestation risk. © 2018 Elsevier B.V.

No Thumbnail Available
Publication

Urban soils as a spatial indicator of quality for urban socio-ecological systems

2021 , Bonilla Bedoya, Santiago , López-Ulloa M. , Mora-Garcés A. , Macedo-Pezzopane J.E. , Salazar L. , Herrera M.Á.

The development of criteria and indicators to quantify the transition to sustainability of the urban socio-ecological systems quality is determinant for planning policies and the 21st century urban agenda. This study models the spatial variation in the concentration and distribution of some macronutrients, micronutrients, and trace nutrients in the soil of a high-altitude city in the Andes. Meanwhile, machine learning methods were employed to study some interactions between the different dimensions that constitute an urban socio-ecosystem that caused these variations. We proposed a methodology that considered two phases: a) field work to collect data on 300 soil samples; laboratory analysis to measure the concentrations of 24 macronutrients, micronutrients, and trace nutrients; and the design of geophysical, spectral, and urban co-variables; b) statistical and geo-informatics analysis, where multivariate analysis grouped the elements into factors; and, machine learning integrated with co-variables was applied to derive the intensity of each factor across the city. Multivariate statistics described the variation in soil co-concentrations with a moderate percentage (42%). Four factors were determined that grouped some of the analyzed elements, as follows: F1 (Zn, S, Cu, Pb, Ni, and Cr), F2 (Ba, Ag, K, In, and Mg), F3 (B, V, Li, and Sr), and F4 (Si and Mn). The percentage R2 out-of-bag of the spatial model were: F1 = 20%, F2 = 8%, F3 = 14%, and F4 = 10%. Our outputs show that the enrichment and contamination by anthropogenic factors, such as the increase in population density, land use, road network, and traffic generated by fossil fuel vehicles, should be prioritized in urban planning decisions. © 2021

No Thumbnail Available
Publication

The conflict between Rights of Nature and mining in Ecuador: Implications of the Los Cedros Cloud Forest case for biodiversity conservation

2024 , Peck M.R. , Desselas M. , Bonilla Bedoya, Santiago , Redín G. , Durango-Cordero J.

Global emergence of Rights of Nature (RoN) has gained momentum since Ecuador became the first country to constitutionally recognize it in 2008. The shift from perceiving nature as an object, to granting it legal subjecthood, can revolutionize protection of ecological systems. In 2021, Ecuador's Constitutional Court issued a landmark ruling, halting mining in the Los Cedros Protected Forest. Three pillars form the basis for legal protection of Los Cedros: (i) the right to timely, Free Prior Informed Environmental Consultation, (ii) application of the Precautionary Principle in risk to RoN, and (iii) the Right to Water. We analyse the Court ruling to identify legal frameworks applied then map and rank mining risk to other protected forests, Indigenous territories, unprotected native ecosystems, biodiversity and areas of water resource conflict to determine potential scale of conflict between mining and RoN. 7813 mining concessions of 22,812km2 overlay 9.2% of Ecuadorian mainland, 2323 concessions (29.7%) overlap 16,081km2 of protected forest (4781 km2, 20%), Indigenous territory (6473 km2, 8%) and native vegetation outside protected areas and Indigenous territories (13,390 km2, 9%). With 80% of their protected forests at risk from large-scale mining, the most impacted Indigenous communities are the Shuar. Synthesis and applications: The Los Cedros legal case in Ecuador sets a precedent for using RoN to challenge mining in 4781 km2 of similar Protected Forest, with potential to protect an additional 16,081 km2 of Indigenous lands and biologically important ecosystems. However, lack of biological data for these areas will necessitate extensive data collection, possibly through community-empowering citizen science. Our study emphasizes the urgent need to integrate indigenous and traditional ecological knowledge (ITEK), law and ecology. We propose a new transdisciplinary field of ‘ecological forensics’ to support nature protection within the RoN framework. Our research also identifies areas where RoN could effectively protect nature and that are likely to be of high investment risk for the mining industry. The final recommendation is to reconsider mining concessions in Ecuador, especially in ecologically sensitive areas, Indigenous territories, high biodiversity areas, and regions with water resource conflicts, to maintain ecological integrity and social harmony. Read the free Plain Language Summary for this article on the Journal blog. © 2024 The Authors. People and Nature published by John Wiley & Sons Ltd on behalf of British Ecological Society.

No Thumbnail Available
Publication

Risk assessment of unlined oil pits leaking into groundwater in the Ecuadorian Amazon: A modified GIS-DRASTIC approach

2022 , Durango-Cordero J. , Saqalli M. , Ferrant S. , Bonilla S. , Maurice L. , Arellano P. , Elger A.

This study evaluates the risk of groundwater contamination from unlined oil pits, in the Northern Ecuadorian Amazon (NEA). Applying spatial analysis, several maps were provided for its integration in land use planning, public health improvement and future site-specific investigations. Two main maps were produced: (1) a vulnerability indexed map using a modified DRASTIC model and (2) a hazard map based on the past (1995–1997) and present (2018) contamination using a weighted density equation. The hazard was derived from hydrocarbon contained in oil pits associated with a cost-distance analysis to obtain different maximum distance ranges (MDR), to model the surface of potentially impacted groundwater. The results indicate a total calculated hydrocarbons of 39 052 tons. A MDR from 500–10 000 km was retained to map aquifers at risk, the maximum surface potentially at risk covers 13% of the NEA, while 83% of the area represents low to medium-low vulnerability. This study led to several recommendations, such as the level of suitability of the available information, and what gaps should be filled to improve future research. A surface of 271–766.5 km in the 500-2000-m distance range should be prioritised for finer scale risk assessment. © 2021 Elsevier Ltd

No Thumbnail Available
Publication

Gradient boosting machine to assess the public protest impact on urban air quality

2021 , Zalakeviciute R. , Rybarczyk Y. , Alexandrino K. , Bonilla Bedoya, Santiago , Mejia D. , Bastidas M. , Diaz V.

Political and economic protests build-up due to the financial uncertainty and inequality spreading throughout the world. In 2019, Latin America took the main stage in a wave of protests. While the social side of protests is widely explored, the focus of this study is the evolution of gaseous urban air pollutants during and after one of these events. Changes in concentrations of NO2, CO, O3 and SO2 during and after the strike, were studied in Quito, Ecuador using two approaches: (i) inter-period observational analysis; and (ii) machine learning (ML) gradient boosting machine (GBM) developed business-as-usual (BAU) comparison to the observations. During the strike, both methods showed a large reduction in the concentrations of NO2 (31.5–32.36%) and CO (15.55–19.85%) and a slight reduction for O3 and SO2. The GBM approach showed an exclusive potential, especially for a lengthier period of predictions, to estimate strike impact on air quality even after the strike was over. This advocates for the use of machine learning techniques to estimate an extended effect of changes in human activities on urban gaseous pollution. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

No Thumbnail Available
Publication

Evaluating night-time light sources and correlation with socio-economic development using high-resolution multi-spectral Jilin-1 satellite imagery of Quito, Ecuador

2023 , Watson C.S. , Elliott J.R. , Córdova M. , Menoscal J. , Bonilla Bedoya, Santiago

Artificial light at night (ALAN) has positive and negative effects on social, economic, environmental, and ecological systems, and will increase with urban expansion. In this study, we used a multi-spectral 1.5 m resolution night-time acquisition from a Jilin-1 satellite over the city of Quito, Ecuador, to evaluate spatial lighting patterns in an expanding and topography complex-built environment. We demonstrated a requirement for robust georeferencing and orthorectification due to the complex topography, with errors on the order of 4–6 pixels (5.8–8.4 m CE95). We also quantified differences in observed brightness due to the image acquisition and local geometry. Street light type was distinguishable between high-pressure sodium (HPS) and light emitting diode (LED) sources (F1-score = 0.72–0.83) using a shark random forest decision tree approach. Additionally, street lights could be located within 10 m (F1-score = 0.71) with balanced omissions and commissions. Spatial trends revealed that the road network was the dominant source of illumination, accounting for 45% of illuminated pixels, whereas built-up areas accounted for 23%. Overall, 68% of all illuminated pixels were on or within 10 m of the road. Higher socio-economic development was associated with higher proportions of LED lighting, greater road network lighting and density of street lights, higher overall radiance for built-up areas and the road network, and greater coverage and illumination of designated green spaces. The broad impacts of ALAN mean that addressing the causes and consequences of lighting inequalities is a complex issue. Nonetheless, Jilin-1 night-time imagery offers a low-cost way to map and monitor light sources at high-resolution that will be beneficial to city-planners and progressing Sustainable Development Goals. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

No Thumbnail Available
Publication

Urban soil management in the strategies for adaptation to climate change of cities in the Tropical Andes

2022 , Bonilla Bedoya, Santiago , Ángel Herrera, M. , Vaca, A. , Salazar, L. , Zalakeviciute, R. , Mejía, D. , López-Ulloa, M.

The unique characteristics of a city amplify the impacts of climate change; therefore, urban planning in the 21st century is challenged to apply mitigation and adaptation strategies that ensure the collective well-being. Despite advances in monitoring urban environmental change, research on the application of adaptation-oriented criteria remains a challenge in urban planning in the Global South. This study proposes to include urban land management as a criterion and timely strategy for climate change adaptation in the cities of the Tropical Andes. Here, we estimate the distribution of the soil organic carbon stock (OCS) of the city of Quito (2,815 m.a.s.l.; population 2,011,388; 197.09 km2) in the following three methodological moments: i) field/laboratory: city-wide sampling design established to collect 300 soil samples (0–15 cm) and obtain data on organic carbon (OC) concentrations in addition to 30 samples for bulk density (BD); ii) predictors: geographic, spectral and anthropogenic dimensions established from 17 co-variables; and iii) spatial modeling: simple multiple regression (SMRM) and random forest (RFM) models of organic carbon concentrations and density as well as OCS stock estimation. We found that the spatial modeling techniques were complementary; however, SMRM showed a relatively higher fit both (OC: r2 = 20%, BD: r2 = 16%) when compared to RFM (OC: r2 = 8% and BD: r2 = 5%). Thus, soil carbon stock (0–0.15 m) was estimated with a spatial variation that fluctuated between 9.89 and 21.48 kg/m2; whereas, RFM showed fluctuations between 10.38 and 17.67 kg/m2. We found that spatial predictors (topography, relative humidity, precipitation, temperature) and anthropogenic predictors (population density, roads, vehicle traffic, land cover) positively influence the model, while spatial predictors have little influence and show multicollinearity with relative humidity. Our research suggests that urban land management in the 21st century provides key information for adaptation and mitigation strategies aimed at coping with global and local climate variations in the cities of the Tropical Andes. © 2022 Elsevier B.V.