2024 2024 2023 2023 2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 0 0 2 2 4 4 6 6 8 8 10 10
Now showing 1 - 10 of 27
No Thumbnail Available
Publication

The effect of national protest in Ecuador on PM pollution

2021 , Zalakeviciute R. , Alexandrino K. , Mejia D. , Bastidas M.G. , Oleas N.H. , Gabela D. , Chau P.N. , Bonilla Bedoya, Santiago , Diaz V. , Rybarczyk Y.

Particulate matter (PM) accounts for millions of premature deaths in the human population every year. Due to social and economic inequality, growing human dissatisfaction manifests in waves of strikes and protests all over the world, causing paralysis of institutions, services and circulation of transport. In this study, we aim to investigate air quality in Ecuador during the national protest of 2019, by studying the evolution of PM2.5 (PM ≤ 2.5 µm) concentrations in Ecuador and its capital city Quito using ground based and satellite data. Apart from analyzing the PM2.5 evolution over time to trace the pollution changes, we employ machine learning techniques to estimate these changes relative to the business-as-usual pollution scenario. In addition, we present a chemical analysis of plant samples from an urban park housing the strike. Positive impact on regional air quality was detected for Ecuador, and an overall − 10.75 ± 17.74% reduction of particulate pollution in the capital during the protest. However, barricade burning PM peaks may contribute to a release of harmful heavy metals (tire manufacture components such as Co, Cr, Zn, Al, Fe, Pb, Mg, Ba and Cu), which might be of short- and long-term health concerns. © 2021, The Author(s).

No Thumbnail Available
Publication

Impacts of soil erosion and climate change on the built heritage of the Pambamarca Fortress Complex in northern Ecuador

2023 , Santos F. , Calle N. , Bonilla S. , Sarmiento F , Herrnegger M.

The Pambamarca fortress complex in northern Ecuador is a cultural and built heritage with 18 prehispanic fortresses known as Pucaras. They are mostly located on the ridge of the Pambamarca volcano, which is severely affected by erosion. In this research, we implemented a multiscale methodology to identify sheet, rill and gully erosion in the context of climate change for the prehistoric sites. In a first phase, we coupled the Revised Universal Soil Loss Equation (RUSLE) and four CMIP6 climate models to evaluate and prioritize which Pucaras are prone to sheet and rill erosion, after comparing historical and future climate scenarios. Then, we conducted field visits to collect geophotos and soil samples for validation purposes, as well as drone flight campaigns to derive high resolution digital elevation models and identify gully erosion with the stream power index. Our erosion maps achieved an overall accuracy of 0.75 when compared with geophotos and correlated positively with soil samples sand fraction. The Pucaras evaluated with the historical climate scenario obtained erosion rates ranging between 0 and 20 ton*ha-1*yr-1. These rates also varied from -15.7% to 39.1% for four future climate change models that reported extreme conditions. In addition, after identifying and overflying six Pucaras that showed the highest erosion rates in the future climate models, we mapped their gully-prone areas that represented between 0.9% and 3.2% of their analyzed areas. The proposed methodology allowed us to observe how the design of the Pucaras and their concentric terraces have managed to reduce gully erosion, but also to notice the pressures they suffer due to their susceptibility to erosion, anthropic pressures and climate change. To address this, we suggest management strategies to guide the protection of this cultural and built heritage landscapes. © 2023 Santos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

No Thumbnail Available
Publication

Distinguishing original and non-original stands at the zhanjiang mangrove national nature reserve (P.r. china): Remote sensing and gis for conservation and ecological research

2021 , Durango-Cordero J. , Satyanarayana B. , Chan J.C.-W. , Bogaert J. , Dahdouh-Guebas F.

The present research developed a novel methodological framework to differentiate natural mangrove stands (i.e., original), from stands which were planted and stands naturally established after interaction between planted and non-planted stands (e.g., through pollination, i.e., non-original). Ground-truth and remote sensing data were collected for Zhanjiang Mangrove National Nature Reserve (ZMNNR) in P.R. China. First, satellite images of Corona (1967) and GeoEye-1 (2009) were overlaid to identify original (1967) and non-original (2009) mangrove stands. Second, in both stands a total of 75 in situ plots (25 m2) were measured for ground-truthing of tree structural parameters including height, density, basal area and Complexity Index (CI). From temporal satellite data, we identify 236.12 ha of original mangrove and 567.88 ha of non-original mangrove in the reserve. Averaged measurements of the original mangrove stands, i.e., stem density (1164 nos. 0.1 ha−1), basal area (90.3 m2 0.1 ha−1) and CI (100.59), indicated that they were in a state of maturity and less disturbed compared to the non-original mangroves (density, 1241 nos. 0.1 ha−1; basal area, 4.92 m2 0.1 ha−1 and CI, 55.65). The Kruskal–Wallis test showed significant differentiation between the original and non-original mangrove tree structural parameters: Kandelia obovata’s density, X2 = 34.78, d.f. = 1, p = 0.001; basal area, X2 = 108.15, d.f. = 1, p = 0.001; Rizhopora stylosa’s density, X2 = 64.03, d.f. = 1, p = 0.001; basal area, X2 = 117.96, d.f. = 1, p = 0.001. The latter is also evident from the clustering plots generated from the Principal Component Analysis (PCA). Vegetation dynamics at the ZMNNR also enabled us to compare the species composition and distribution patterns with other Indo-West Pacific regions. Overall, the present study not only highlights the advantage of >50 years old satellite data but also provide a benchmark for future ecological research, conservation and management of the ZMNNR. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

No Thumbnail Available
Publication

Loss and fragmentation of native forest ecosystems and its influence on habitat diversity in the Tropical Andes hotspot [Pérdida y fragmentación de ecosistemas boscosos nativos y su influencia en la diversidad de hábitats en el hotspot Andes tropicales]

2021 , Rodríguez-Echeverry J. , Leiton M.

It is necessary to evaluate the degree of forest landscape transformation for a proper conservation and restoration planning. The aim of this study was to evaluate the spatio-temporal changes of native forest ecosystems and the influence of these changes on habitat diversity in the Mira River watershed, Ecuador, from 1991 to 2017. The evaluation was carried out using satellite images and landscape metrics. A loss of 9% of native forest ecosystems was recorded at a deforestation rate of 0.57% year-1, which was associated with the increase in agricultural crops. The highest native forest loss was for thorny dry forest, inter-andean dry forest, low-montane dry forest, and premontane very-wet forest. Changes in the spatial patterns of forest ecosystems revealed a severe fragmentation. The Shannon diversity index decreased by 0.20, reflecting the loss of native forest habitats relative to the loss and fragmentation of the ecosystems studied. This study suggested to landscape-scale conservation and restoration planning, using the patch-corridor-matrix model, which must be complemented with land use planning and supported within a framework of environmental policies. © 2021 Universidad Nacional Autonoma de Mexico. All rights reserved.

No Thumbnail Available
Publication

Urban soil management in the strategies for adaptation to climate change of cities in the Tropical Andes

2022 , Bonilla Bedoya, Santiago , Ángel Herrera, M. , Vaca, A. , Salazar, L. , Zalakeviciute, R. , Mejía, D. , López-Ulloa, M.

The unique characteristics of a city amplify the impacts of climate change; therefore, urban planning in the 21st century is challenged to apply mitigation and adaptation strategies that ensure the collective well-being. Despite advances in monitoring urban environmental change, research on the application of adaptation-oriented criteria remains a challenge in urban planning in the Global South. This study proposes to include urban land management as a criterion and timely strategy for climate change adaptation in the cities of the Tropical Andes. Here, we estimate the distribution of the soil organic carbon stock (OCS) of the city of Quito (2,815 m.a.s.l.; population 2,011,388; 197.09 km2) in the following three methodological moments: i) field/laboratory: city-wide sampling design established to collect 300 soil samples (0–15 cm) and obtain data on organic carbon (OC) concentrations in addition to 30 samples for bulk density (BD); ii) predictors: geographic, spectral and anthropogenic dimensions established from 17 co-variables; and iii) spatial modeling: simple multiple regression (SMRM) and random forest (RFM) models of organic carbon concentrations and density as well as OCS stock estimation. We found that the spatial modeling techniques were complementary; however, SMRM showed a relatively higher fit both (OC: r2 = 20%, BD: r2 = 16%) when compared to RFM (OC: r2 = 8% and BD: r2 = 5%). Thus, soil carbon stock (0–0.15 m) was estimated with a spatial variation that fluctuated between 9.89 and 21.48 kg/m2; whereas, RFM showed fluctuations between 10.38 and 17.67 kg/m2. We found that spatial predictors (topography, relative humidity, precipitation, temperature) and anthropogenic predictors (population density, roads, vehicle traffic, land cover) positively influence the model, while spatial predictors have little influence and show multicollinearity with relative humidity. Our research suggests that urban land management in the 21st century provides key information for adaptation and mitigation strategies aimed at coping with global and local climate variations in the cities of the Tropical Andes. © 2022 Elsevier B.V.

No Thumbnail Available
Publication

Evaluating night-time light sources and correlation with socio-economic development using high-resolution multi-spectral Jilin-1 satellite imagery of Quito, Ecuador

2023 , Watson C.S. , Elliott J.R. , Córdova M. , Menoscal J. , Bonilla Bedoya, Santiago

Artificial light at night (ALAN) has positive and negative effects on social, economic, environmental, and ecological systems, and will increase with urban expansion. In this study, we used a multi-spectral 1.5 m resolution night-time acquisition from a Jilin-1 satellite over the city of Quito, Ecuador, to evaluate spatial lighting patterns in an expanding and topography complex-built environment. We demonstrated a requirement for robust georeferencing and orthorectification due to the complex topography, with errors on the order of 4–6 pixels (5.8–8.4 m CE95). We also quantified differences in observed brightness due to the image acquisition and local geometry. Street light type was distinguishable between high-pressure sodium (HPS) and light emitting diode (LED) sources (F1-score = 0.72–0.83) using a shark random forest decision tree approach. Additionally, street lights could be located within 10 m (F1-score = 0.71) with balanced omissions and commissions. Spatial trends revealed that the road network was the dominant source of illumination, accounting for 45% of illuminated pixels, whereas built-up areas accounted for 23%. Overall, 68% of all illuminated pixels were on or within 10 m of the road. Higher socio-economic development was associated with higher proportions of LED lighting, greater road network lighting and density of street lights, higher overall radiance for built-up areas and the road network, and greater coverage and illumination of designated green spaces. The broad impacts of ALAN mean that addressing the causes and consequences of lighting inequalities is a complex issue. Nonetheless, Jilin-1 night-time imagery offers a low-cost way to map and monitor light sources at high-resolution that will be beneficial to city-planners and progressing Sustainable Development Goals. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

No Thumbnail Available
Publication

Exploring Wardriving Potential in the Ecuadorian Amazon for Indirect Data Collection

2021 , Santos F. , Pesantes P. , Bonilla Bedoya, Santiago

Digital inclusion in the Ecuadorian amazon is known as a problem, which intensified with the pandemic. Since social distance is now the norm, we constructed a WiFi access point (WAP) scanner to map and analyze its data. We correlated it with ancillary geoinformation to observe its potential and limitations as a method for indirect data collection. Our result indicate that WAP correlate weakly but positively with nightlight, young population, accessibility to economical centres, and negatively with slope. Moreover, we differentiated vulnerability naming patters from Service Set Identifiers (SSDI) and differentiated the number of WAPs according to land cover for differentiate urban from rural areas. This output is now offering increasing applications to get updated rought estimates of internet activity and indirectly correlations to socio-economic conditions, technology practices, and opportunities for natural language processing. Therefore, we conclude that wardriving offer interesting opportunities for mapping social data but also concerns as an indirect data collection method. © Published under licence by IOP Publishing Ltd.

No Thumbnail Available
Publication

Patterns of timber harvesting and its relationship with sustainable forest management in the western Amazon, Ecuador case

2017 , Bonilla Bedoya, Santiago , Estrella-Bastidas A. , Ordoñez M. , Sánchez A. , Herrera M.A.

The Amazon rainforest lies within the most diverse forest ecosystem in the world. However, a large part of the tropical rainforest is being degraded because of timber harvesting without any sustainability criteria and owing to a limited understanding of the effects of forest exploitation. The Ecuadorian Amazon (EA) is part of the Andes Amazon (AA), an area covered by five countries (Venezuela, Colombia, Ecuador, Peru and Bolivia). This research identified the patterns of legal timber harvesting in the EA and determined current trends with respect to mostly harvested forest species. Two harvesting programs aimed at small farmers prevail in the EA: first, naturally regenerated trees felling program, and simplified timber harvesting programs in native forests. Considering the surface and volume of logging, significant differences were detected between logging procedures and ecosystems in the region. Two hundred and thirty-two genera are registered for harvest and, 51.93% of the total harvesting volume comes from eight genera and ten species. This research shows that in fallows of fragmented forest ecosystems, small farmers are harvesting fast-growing pioneer species. Maintaining a sustainable production in timber harvesting depends, by and large, on the harvesting and felling programs established on small farms. © 2017 Taylor & Francis.

No Thumbnail Available
Publication

Urban–Rural Gradients Predict Educational Gaps: Evidence from a Machine Learning Approach Involving Academic Performance and Impervious Surfaces in Ecuador

2021 , Santos-García F. , Valdivieso K.D. , Rienow A. , Gairín J.

Academic performance (AP) is explained by a multitude of factors, principally by those related to socioeconomic, cultural, and educational environments. However, AP is less understood from a spatial perspective. The aim of this study was to investigate a methodology using a machine learning approach to determine which answers from a questionnaire-based survey were relevant for explaining the high AP of secondary school students across urban–rural gradients in Ecuador. We used high school locations to construct individual datasets and stratify them according to the AP scores. Using the Boruta algorithm and backward elimination, we identified the best predictors, classified them using random forest, and mapped the AP classification probabilities. We summarized these results as frequent answers observed for each natural region in Ecuador and used their probability outputs to formulate hypotheses with respect to the urban–rural gradient derived from annual maps of impervious surfaces. Our approach resulted in a cartographic analysis of AP probabilities with overall accuracies around 0.83–0.84% and Kappa values of 0.65–0.67%. High AP was primarily related to answers regarding the academic environment and cognitive skills. These identified answers varied depending on the region, which allowed for different interpretations of the driving factors of AP in Ecuador. A rural-to-urban transition ranging 8–17 years was found to be the timespan correlated with achievement of high AP. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

No Thumbnail Available
Publication

The conflict between Rights of Nature and mining in Ecuador: Implications of the Los Cedros Cloud Forest case for biodiversity conservation

2024 , Peck M.R. , Desselas M. , Bonilla Bedoya, Santiago , Redín G. , Durango-Cordero J.

Global emergence of Rights of Nature (RoN) has gained momentum since Ecuador became the first country to constitutionally recognize it in 2008. The shift from perceiving nature as an object, to granting it legal subjecthood, can revolutionize protection of ecological systems. In 2021, Ecuador's Constitutional Court issued a landmark ruling, halting mining in the Los Cedros Protected Forest. Three pillars form the basis for legal protection of Los Cedros: (i) the right to timely, Free Prior Informed Environmental Consultation, (ii) application of the Precautionary Principle in risk to RoN, and (iii) the Right to Water. We analyse the Court ruling to identify legal frameworks applied then map and rank mining risk to other protected forests, Indigenous territories, unprotected native ecosystems, biodiversity and areas of water resource conflict to determine potential scale of conflict between mining and RoN. 7813 mining concessions of 22,812km2 overlay 9.2% of Ecuadorian mainland, 2323 concessions (29.7%) overlap 16,081km2 of protected forest (4781 km2, 20%), Indigenous territory (6473 km2, 8%) and native vegetation outside protected areas and Indigenous territories (13,390 km2, 9%). With 80% of their protected forests at risk from large-scale mining, the most impacted Indigenous communities are the Shuar. Synthesis and applications: The Los Cedros legal case in Ecuador sets a precedent for using RoN to challenge mining in 4781 km2 of similar Protected Forest, with potential to protect an additional 16,081 km2 of Indigenous lands and biologically important ecosystems. However, lack of biological data for these areas will necessitate extensive data collection, possibly through community-empowering citizen science. Our study emphasizes the urgent need to integrate indigenous and traditional ecological knowledge (ITEK), law and ecology. We propose a new transdisciplinary field of ‘ecological forensics’ to support nature protection within the RoN framework. Our research also identifies areas where RoN could effectively protect nature and that are likely to be of high investment risk for the mining industry. The final recommendation is to reconsider mining concessions in Ecuador, especially in ecologically sensitive areas, Indigenous territories, high biodiversity areas, and regions with water resource conflicts, to maintain ecological integrity and social harmony. Read the free Plain Language Summary for this article on the Journal blog. © 2024 The Authors. People and Nature published by John Wiley & Sons Ltd on behalf of British Ecological Society.