Now showing 1 - 10 of 23
No Thumbnail Available
Publication

Calculating minimum safety distance against wildfires at the wildland-urban interface in Chile and Spain

2022 , Castillo Soto, M.E. , Molina Martínez, J.R. , Bonilla Bedoya, Santiago , Moreno García, R.A.

Wildfires in the urban-forest interface constitute a civil protection emergency, causing considerable personal injury and damage to properties. The potential impacts of wildfires on buildings can be minimized by reducing the surrounding fuel and the use of structural materials with low flammability. However, the costs associated with implementing these actions and the responsibility for maintenance usually present conflicts with the property owners. This study aimed to identify minimum safety distances in wildland-urban interfaces within priority areas. The priority areas were identified based on the integration of fire risk and fuel hazard. Radiant heat is a variable in the behavior of fire that directly influences the definition of safety distances. In this research the radiant heat transfer was calculated based on the potential fire behavior for each study area. A comparative study of the horizontal heat transfer method and the radiant heat flux model was carried out. The horizontal heat transfer method indicated the highest vegetation-free distances, ranging from 23 m to 32 m. Some safety distances were validated using experimental fires and wildfires. The findings from the experimental fires and wildfires emphasize the need for a progressive fuel load reduction to mitigate radiant heat transfer. This may include both the removal of surface fuel and removal of trees to mitigate against crown fires. Our findings provide relevant information for decision-making on the effectiveness and efficiency of safety distances at the wildland-urban interface. © 2022 The Author(s)

No Thumbnail Available
Publication

The conflict between Rights of Nature and mining in Ecuador: Implications of the Los Cedros Cloud Forest case for biodiversity conservation

2024 , Peck M.R. , Desselas M. , Bonilla Bedoya, Santiago , Redín G. , Durango-Cordero J.

Global emergence of Rights of Nature (RoN) has gained momentum since Ecuador became the first country to constitutionally recognize it in 2008. The shift from perceiving nature as an object, to granting it legal subjecthood, can revolutionize protection of ecological systems. In 2021, Ecuador's Constitutional Court issued a landmark ruling, halting mining in the Los Cedros Protected Forest. Three pillars form the basis for legal protection of Los Cedros: (i) the right to timely, Free Prior Informed Environmental Consultation, (ii) application of the Precautionary Principle in risk to RoN, and (iii) the Right to Water. We analyse the Court ruling to identify legal frameworks applied then map and rank mining risk to other protected forests, Indigenous territories, unprotected native ecosystems, biodiversity and areas of water resource conflict to determine potential scale of conflict between mining and RoN. 7813 mining concessions of 22,812km2 overlay 9.2% of Ecuadorian mainland, 2323 concessions (29.7%) overlap 16,081km2 of protected forest (4781 km2, 20%), Indigenous territory (6473 km2, 8%) and native vegetation outside protected areas and Indigenous territories (13,390 km2, 9%). With 80% of their protected forests at risk from large-scale mining, the most impacted Indigenous communities are the Shuar. Synthesis and applications: The Los Cedros legal case in Ecuador sets a precedent for using RoN to challenge mining in 4781 km2 of similar Protected Forest, with potential to protect an additional 16,081 km2 of Indigenous lands and biologically important ecosystems. However, lack of biological data for these areas will necessitate extensive data collection, possibly through community-empowering citizen science. Our study emphasizes the urgent need to integrate indigenous and traditional ecological knowledge (ITEK), law and ecology. We propose a new transdisciplinary field of ‘ecological forensics’ to support nature protection within the RoN framework. Our research also identifies areas where RoN could effectively protect nature and that are likely to be of high investment risk for the mining industry. The final recommendation is to reconsider mining concessions in Ecuador, especially in ecologically sensitive areas, Indigenous territories, high biodiversity areas, and regions with water resource conflicts, to maintain ecological integrity and social harmony. Read the free Plain Language Summary for this article on the Journal blog. © 2024 The Authors. People and Nature published by John Wiley & Sons Ltd on behalf of British Ecological Society.

No Thumbnail Available
Publication

Mapping 50 years of contribution to the development of soil quality biological indicators

2023 , Bonilla Bedoya, Santiago , Valencia K. , Herrera M.Á. , López-Ulloa M. , Donoso D.A. , Macedo Pezzopane J.E.

Biological indicators of soil quality express the capacity of a soil to maintain its ecosystem functions and services between socio-ecosystem inflection thresholds; therefore, they are determinants in management and land use decisions. However, their development until a few decades ago was limited for several reasons: reductionism and early development of other dimensions, such as physical and chemical indicators or their methodological complexity, thus affecting the importance given to biological factors and the integral evaluation of soil quality or health. Thus, this review presents a mapping of the scientific contributions of the last 50 years oriented to the theoretical and methodological development of biological indicators of soil quality, identifying their development and application in these decades. We conducted a bibliometric analysis that allowed us to present an overview of the field with respect to scientific production: temporality, geographical origin, institutional origin, journals that promote the development of the field, articles with greater influence by citation in the field of study, and the co-occurrences of these indicators in research. This analysis was complemented at the second stage by a systematic review of the literature with the greatest impact by citation. We found 2320 scientific papers distributed mainly in the United States (17.8%), China (12.2%), Brazil (8.3%), India (6.3%), and European Mediterranean countries, such as Spain, France, and Italy (14.2%). Our review showed 25 biological indicators with the highest occurrence; for example, microbial biomass (1 1 8), enzymatic activity (90), and organic matter (78); other indicators, such as earthworms, nematodes, or springtails, are also reported. All indicators showed relationships, to a greater or lesser extent, with soil biodiversity and its functions in the landscape. Important advances in soil indicators have developed gradually in the last few decades, with scientific efforts mainly concentrated in developed and emerging countries. In the last decade, the production curve continues with a growth trend., and research questions in the field revolve around the linkage of diversity and function from a molecular point of view. The scope goes beyond productivity, manifesting the real need to conserve and manage the ecosystem services of a limited and non-renewable natural resource. Pioneering research should begin to report on the scope of soil biological monitoring and its influence on policy, management, and land use. Finally, the promotion of research networks with developing countries can foster the development of regional and local soil monitoring policies in these regions. © 2023 The Author(s)

No Thumbnail Available
Publication

Modelling the relationship between urban expansion processes and urban forest characteristics: An application to the Metropolitan District of Quito

2020 , Bonilla Bedoya, Santiago , Mora A., Vaca A. , Estrella A. , Herrera M.Á.

The rapid process of global urbanisation engenders changes in urban socio-ecological systems and in the landscape structure. However, the future processes of urban expansion in Latin American cities has been little studied even though the wellbeing of its citizens will depend on territorial management and on planning the provision of ecosystemic benefits and services. This research, considering different socio-ecological dimensions, proposed to determine the causes of potential urban expansion, analysing the dimensions and possible predictors that would explain the expansion of a high Andean city and its influence on peri-urban forest landscapes. To develop a model that integrates the complexity of the system, we used the following five dimensions: biophysics, land cover and management, infrastructure and services, socio-economics, and landscape metrics, and we opted for a binomial analysis through a spatial logistic regression model developed from 33 predictors. Considering the odd radio of the model, we observe that the independent increase in predictors, including building blocks, drinking water, sewerage, waste collection, average land size, the Interspersion and Juxtaposition Index (IJI) and Largest Patch Index (LPI), and the constant behaviour of the others predictors, would increase the probability of a potential urbanisation of the territory. Similarly, the independent increase in predictors, including the presence of protected areas, the presence of protected forests, land cover, unemployment, and the Shannon Diversity Index(SHDI), reduce the probability of the urbanisation process. Our results suggest that the territorial vulnerability from a potential urbanisation process is strongly related to an increase in infrastructure, services, and the average size of properties variables. Moreover, the landscape with the greatest potential for urbanisation presents an adequate intercalation of the different patches that compose it. However, the presence of variables such as protected areas and protective forests, in addition to monitoring indicators such as landscape diversity and mitigation strategies, could be considered to focus the analysis on the current dynamics of urbanisation processes in Latin America. © 2019 Elsevier Ltd

No Thumbnail Available
Publication

Urban soils as a spatial indicator of quality for urban socio-ecological systems

2021 , Bonilla Bedoya, Santiago , López-Ulloa M. , Mora-Garcés A. , Macedo-Pezzopane J.E. , Salazar L. , Herrera M.Á.

The development of criteria and indicators to quantify the transition to sustainability of the urban socio-ecological systems quality is determinant for planning policies and the 21st century urban agenda. This study models the spatial variation in the concentration and distribution of some macronutrients, micronutrients, and trace nutrients in the soil of a high-altitude city in the Andes. Meanwhile, machine learning methods were employed to study some interactions between the different dimensions that constitute an urban socio-ecosystem that caused these variations. We proposed a methodology that considered two phases: a) field work to collect data on 300 soil samples; laboratory analysis to measure the concentrations of 24 macronutrients, micronutrients, and trace nutrients; and the design of geophysical, spectral, and urban co-variables; b) statistical and geo-informatics analysis, where multivariate analysis grouped the elements into factors; and, machine learning integrated with co-variables was applied to derive the intensity of each factor across the city. Multivariate statistics described the variation in soil co-concentrations with a moderate percentage (42%). Four factors were determined that grouped some of the analyzed elements, as follows: F1 (Zn, S, Cu, Pb, Ni, and Cr), F2 (Ba, Ag, K, In, and Mg), F3 (B, V, Li, and Sr), and F4 (Si and Mn). The percentage R2 out-of-bag of the spatial model were: F1 = 20%, F2 = 8%, F3 = 14%, and F4 = 10%. Our outputs show that the enrichment and contamination by anthropogenic factors, such as the increase in population density, land use, road network, and traffic generated by fossil fuel vehicles, should be prioritized in urban planning decisions. © 2021

No Thumbnail Available
Publication

Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador

2022 , Watson, C.S. , Elliott, J.R. , Ebmeier, S.K. , Vásquez, M.A. , Zapata, C. , Bonilla Bedoya, Santiago , Cubillo, P. , Orbe, D.F. , Córdova, M. , Menoscal, J. , Sevilla, E.

Greenspaces within broader ecosystem-based disaster risk reduction (Eco-DRR) strategies provide multiple benefits to society, biodiversity, and addressing climate breakdown. In this study, we investigated urban growth, its intersection with hazards, and the availability of greenspace for disaster risk reduction (DRR) in the city of Quito, Ecuador, which experiences multiple hazards including landslides, floods, volcanoes, and earthquakes. We used satellite data to quantify urban sprawl and developed a workflow incorporating high-resolution digital elevation models (DEMs) to identify potential greenspaces for emergency refuge accommodation (DRR greenspace), for example, following an earthquake. Quito's historical urban growth totalled 1/4192km2 for 1986-2020 and was primarily on flatter land, in some cases crossed by steep ravines. By contrast, future projections indicate an increasing intersection between easterly urbanisation and steep areas of high landslide susceptibility. Therefore, a timely opportunity exists for future risk-informed planning. Our workflow identified 18.6km2 of DRR greenspaces, of which 16.3km2 intersected with potential sources of landslide and flood hazards, indicating that hazard events could impact potential "safe spaces". These spaces could mitigate future risk if designated as greenspaces and left undeveloped. DRR greenspace overlapped 7% (2.5km2) with municipality-designated greenspace. Similarly, 10% (1.7km2) of municipality-designated "safe space"for use following an earthquake was classified as potentially DRR suitable in our analysis. For emergency refuge, currently designated greenspaces could accommodate 1/42%-14% (depending on space requirements) of Quito's population within 800m. This increases to 8%-40% considering all the potential DRR greenspace mapped in this study. Therefore, a gap exists between the provision of DRR and designated greenspace. Within Quito, we found a disparity between access to greenspaces across socio-economic groups, with lower income groups having less access and further to travel to designated greenspaces. Notably, the accessibility of greenspaces was high overall with 98% (2.3 million) of Quito's population within 800m of a designated greenspace, of which 88% (2.1 million) had access to potential DRR greenspaces. Our workflow demonstrates a citywide evaluation of DRR greenspace potential and provides the foundation upon which to evaluate these spaces with local stakeholders. Promoting equitable access to greenspaces, communicating their multiple benefits, and considering their use to restrict propagating development into hazardous areas are key themes that emerge for further investigation. © 2022 C. Scott Watson et al.

No Thumbnail Available
Publication

Quito'S Urban Imaginaries: Between Conserved and Intervened Green Spaces

2021 , Montero, D. , Estrella A. , Oleas N. , Cruz J. , Salazar L. , Santos F. , Bonilla Bedoya, Santiago

This manuscript presents the results of field research aimed to identify the perceptions that condition the urban imaginaries addressing the green spaces in Quito, Ecuador. Two focus groups were carried out with experts in designing green spaces. The results were evaluated through discourse analysis, applying the dialectical hermeneutical method, to finally establish open, axial, and selective categories. Six categories allow the understanding of the imaginaries associated with the city's green spaces: conserved or intervened spaces, public and private spaces, and individual and collective subjectivity in relation to green areas; also relevant are the interventions of actors such as the state, the real estate market, and the community in the management of these spaces. In the city, conserved green spaces, such as urban and peri-urban forests, are for contemplative use and would be less attractive to the population than provoked green spaces, the latter of which are characterized by facilitating human interaction and by having the direct intervention of public institutions. The identification of public and private green spaces was related to potential forms of urban segregation. Participants stated that privileged social groups have direct access to customized architectural designs, whereas community organizations manage these spaces through social action. © Published under licence by IOP Publishing Ltd.

No Thumbnail Available
Publication

Exploring Wardriving Potential in the Ecuadorian Amazon for Indirect Data Collection

2021 , Santos F. , Pesantes P. , Bonilla Bedoya, Santiago

Digital inclusion in the Ecuadorian amazon is known as a problem, which intensified with the pandemic. Since social distance is now the norm, we constructed a WiFi access point (WAP) scanner to map and analyze its data. We correlated it with ancillary geoinformation to observe its potential and limitations as a method for indirect data collection. Our result indicate that WAP correlate weakly but positively with nightlight, young population, accessibility to economical centres, and negatively with slope. Moreover, we differentiated vulnerability naming patters from Service Set Identifiers (SSDI) and differentiated the number of WAPs according to land cover for differentiate urban from rural areas. This output is now offering increasing applications to get updated rought estimates of internet activity and indirectly correlations to socio-economic conditions, technology practices, and opportunities for natural language processing. Therefore, we conclude that wardriving offer interesting opportunities for mapping social data but also concerns as an indirect data collection method. © Published under licence by IOP Publishing Ltd.

No Thumbnail Available
Publication

Patterns of timber harvesting and its relationship with sustainable forest management in the western Amazon, Ecuador case

2017 , Bonilla Bedoya, Santiago , Estrella-Bastidas A. , Ordoñez M. , Sánchez A. , Herrera M.A.

The Amazon rainforest lies within the most diverse forest ecosystem in the world. However, a large part of the tropical rainforest is being degraded because of timber harvesting without any sustainability criteria and owing to a limited understanding of the effects of forest exploitation. The Ecuadorian Amazon (EA) is part of the Andes Amazon (AA), an area covered by five countries (Venezuela, Colombia, Ecuador, Peru and Bolivia). This research identified the patterns of legal timber harvesting in the EA and determined current trends with respect to mostly harvested forest species. Two harvesting programs aimed at small farmers prevail in the EA: first, naturally regenerated trees felling program, and simplified timber harvesting programs in native forests. Considering the surface and volume of logging, significant differences were detected between logging procedures and ecosystems in the region. Two hundred and thirty-two genera are registered for harvest and, 51.93% of the total harvesting volume comes from eight genera and ten species. This research shows that in fallows of fragmented forest ecosystems, small farmers are harvesting fast-growing pioneer species. Maintaining a sustainable production in timber harvesting depends, by and large, on the harvesting and felling programs established on small farms. © 2017 Taylor & Francis.

No Thumbnail Available
Publication

Central parks as air quality oases in the tropical Andean city of Quito

2024 , Zalakeviciute R. , Bonilla Bedoya, Santiago , Mejia Coronel D. , Bastidas M. , Buenano A. , Diaz-Marquez A.

Urban ecosystem is an intricate agglomeration of human, fauna and flora populations coexisting in natural and artificial environments. As a city develops and expands over time; it may become unbalanced, affecting the quality of ecosystem and urban services and leading to environmental and health problems. Fine particulate matter (particulate matter with aerodynamic diameter ≤2.5 μm - PM2.5) is the air pollutant posing the greatest risk to human health. Quito, the capital city of Ecuador, exhibits a high occurrence of exposure to unhealthy levels of PM2.5 due to a combination of natural and social variables. This study focused on three central parks of this high elevation city, investigating the spatial distribution of PM2.5 concentrations. The particle pollution was then modeled using Normalized Difference Vegetation Index (NDVI). Hazardous instantaneous levels of PM2.5 were consistently found on the edges of the parks along busy avenues, which are also the most frequented areas. This raises concerns about both short- and long-term exposures to toxic traffic pollution in recreational areas within urban dwellings in the global south. The NDVI model successfully predicted the spatial concentrations of PM2.5 in a smaller urban park, suggesting its potential application in other cities. However, further research is required to validate its effectiveness. © 2024 The Authors