Now showing 1 - 10 of 23
No Thumbnail Available
Publication

Calculating minimum safety distance against wildfires at the wildland-urban interface in Chile and Spain

2022 , Castillo Soto, M.E. , Molina Martínez, J.R. , Bonilla Bedoya, Santiago , Moreno García, R.A.

Wildfires in the urban-forest interface constitute a civil protection emergency, causing considerable personal injury and damage to properties. The potential impacts of wildfires on buildings can be minimized by reducing the surrounding fuel and the use of structural materials with low flammability. However, the costs associated with implementing these actions and the responsibility for maintenance usually present conflicts with the property owners. This study aimed to identify minimum safety distances in wildland-urban interfaces within priority areas. The priority areas were identified based on the integration of fire risk and fuel hazard. Radiant heat is a variable in the behavior of fire that directly influences the definition of safety distances. In this research the radiant heat transfer was calculated based on the potential fire behavior for each study area. A comparative study of the horizontal heat transfer method and the radiant heat flux model was carried out. The horizontal heat transfer method indicated the highest vegetation-free distances, ranging from 23 m to 32 m. Some safety distances were validated using experimental fires and wildfires. The findings from the experimental fires and wildfires emphasize the need for a progressive fuel load reduction to mitigate radiant heat transfer. This may include both the removal of surface fuel and removal of trees to mitigate against crown fires. Our findings provide relevant information for decision-making on the effectiveness and efficiency of safety distances at the wildland-urban interface. © 2022 The Author(s)

No Thumbnail Available
Publication

Central parks as air quality oases in the tropical Andean city of Quito

2024 , Zalakeviciute R. , Bonilla Bedoya, Santiago , Mejia Coronel D. , Bastidas M. , Buenano A. , Diaz-Marquez A.

Urban ecosystem is an intricate agglomeration of human, fauna and flora populations coexisting in natural and artificial environments. As a city develops and expands over time; it may become unbalanced, affecting the quality of ecosystem and urban services and leading to environmental and health problems. Fine particulate matter (particulate matter with aerodynamic diameter ≤2.5 μm - PM2.5) is the air pollutant posing the greatest risk to human health. Quito, the capital city of Ecuador, exhibits a high occurrence of exposure to unhealthy levels of PM2.5 due to a combination of natural and social variables. This study focused on three central parks of this high elevation city, investigating the spatial distribution of PM2.5 concentrations. The particle pollution was then modeled using Normalized Difference Vegetation Index (NDVI). Hazardous instantaneous levels of PM2.5 were consistently found on the edges of the parks along busy avenues, which are also the most frequented areas. This raises concerns about both short- and long-term exposures to toxic traffic pollution in recreational areas within urban dwellings in the global south. The NDVI model successfully predicted the spatial concentrations of PM2.5 in a smaller urban park, suggesting its potential application in other cities. However, further research is required to validate its effectiveness. © 2024 The Authors

No Thumbnail Available
Publication

The effect of national protest in Ecuador on PM pollution

2021 , Zalakeviciute R. , Alexandrino K. , Mejia D. , Bastidas M.G. , Oleas N.H. , Gabela D. , Chau P.N. , Bonilla Bedoya, Santiago , Diaz V. , Rybarczyk Y.

Particulate matter (PM) accounts for millions of premature deaths in the human population every year. Due to social and economic inequality, growing human dissatisfaction manifests in waves of strikes and protests all over the world, causing paralysis of institutions, services and circulation of transport. In this study, we aim to investigate air quality in Ecuador during the national protest of 2019, by studying the evolution of PM2.5 (PM ≤ 2.5 µm) concentrations in Ecuador and its capital city Quito using ground based and satellite data. Apart from analyzing the PM2.5 evolution over time to trace the pollution changes, we employ machine learning techniques to estimate these changes relative to the business-as-usual pollution scenario. In addition, we present a chemical analysis of plant samples from an urban park housing the strike. Positive impact on regional air quality was detected for Ecuador, and an overall − 10.75 ± 17.74% reduction of particulate pollution in the capital during the protest. However, barricade burning PM peaks may contribute to a release of harmful heavy metals (tire manufacture components such as Co, Cr, Zn, Al, Fe, Pb, Mg, Ba and Cu), which might be of short- and long-term health concerns. © 2021, The Author(s).

No Thumbnail Available
Publication

Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador

2022 , Watson, C.S. , Elliott, J.R. , Ebmeier, S.K. , Vásquez, M.A. , Zapata, C. , Bonilla Bedoya, Santiago , Cubillo, P. , Orbe, D.F. , Córdova, M. , Menoscal, J. , Sevilla, E.

Greenspaces within broader ecosystem-based disaster risk reduction (Eco-DRR) strategies provide multiple benefits to society, biodiversity, and addressing climate breakdown. In this study, we investigated urban growth, its intersection with hazards, and the availability of greenspace for disaster risk reduction (DRR) in the city of Quito, Ecuador, which experiences multiple hazards including landslides, floods, volcanoes, and earthquakes. We used satellite data to quantify urban sprawl and developed a workflow incorporating high-resolution digital elevation models (DEMs) to identify potential greenspaces for emergency refuge accommodation (DRR greenspace), for example, following an earthquake. Quito's historical urban growth totalled 1/4192km2 for 1986-2020 and was primarily on flatter land, in some cases crossed by steep ravines. By contrast, future projections indicate an increasing intersection between easterly urbanisation and steep areas of high landslide susceptibility. Therefore, a timely opportunity exists for future risk-informed planning. Our workflow identified 18.6km2 of DRR greenspaces, of which 16.3km2 intersected with potential sources of landslide and flood hazards, indicating that hazard events could impact potential "safe spaces". These spaces could mitigate future risk if designated as greenspaces and left undeveloped. DRR greenspace overlapped 7% (2.5km2) with municipality-designated greenspace. Similarly, 10% (1.7km2) of municipality-designated "safe space"for use following an earthquake was classified as potentially DRR suitable in our analysis. For emergency refuge, currently designated greenspaces could accommodate 1/42%-14% (depending on space requirements) of Quito's population within 800m. This increases to 8%-40% considering all the potential DRR greenspace mapped in this study. Therefore, a gap exists between the provision of DRR and designated greenspace. Within Quito, we found a disparity between access to greenspaces across socio-economic groups, with lower income groups having less access and further to travel to designated greenspaces. Notably, the accessibility of greenspaces was high overall with 98% (2.3 million) of Quito's population within 800m of a designated greenspace, of which 88% (2.1 million) had access to potential DRR greenspaces. Our workflow demonstrates a citywide evaluation of DRR greenspace potential and provides the foundation upon which to evaluate these spaces with local stakeholders. Promoting equitable access to greenspaces, communicating their multiple benefits, and considering their use to restrict propagating development into hazardous areas are key themes that emerge for further investigation. © 2022 C. Scott Watson et al.

No Thumbnail Available
Publication

Urban soil management in the strategies for adaptation to climate change of cities in the Tropical Andes

2022 , Bonilla Bedoya, Santiago , Ángel Herrera, M. , Vaca, A. , Salazar, L. , Zalakeviciute, R. , Mejía, D. , López-Ulloa, M.

The unique characteristics of a city amplify the impacts of climate change; therefore, urban planning in the 21st century is challenged to apply mitigation and adaptation strategies that ensure the collective well-being. Despite advances in monitoring urban environmental change, research on the application of adaptation-oriented criteria remains a challenge in urban planning in the Global South. This study proposes to include urban land management as a criterion and timely strategy for climate change adaptation in the cities of the Tropical Andes. Here, we estimate the distribution of the soil organic carbon stock (OCS) of the city of Quito (2,815 m.a.s.l.; population 2,011,388; 197.09 km2) in the following three methodological moments: i) field/laboratory: city-wide sampling design established to collect 300 soil samples (0–15 cm) and obtain data on organic carbon (OC) concentrations in addition to 30 samples for bulk density (BD); ii) predictors: geographic, spectral and anthropogenic dimensions established from 17 co-variables; and iii) spatial modeling: simple multiple regression (SMRM) and random forest (RFM) models of organic carbon concentrations and density as well as OCS stock estimation. We found that the spatial modeling techniques were complementary; however, SMRM showed a relatively higher fit both (OC: r2 = 20%, BD: r2 = 16%) when compared to RFM (OC: r2 = 8% and BD: r2 = 5%). Thus, soil carbon stock (0–0.15 m) was estimated with a spatial variation that fluctuated between 9.89 and 21.48 kg/m2; whereas, RFM showed fluctuations between 10.38 and 17.67 kg/m2. We found that spatial predictors (topography, relative humidity, precipitation, temperature) and anthropogenic predictors (population density, roads, vehicle traffic, land cover) positively influence the model, while spatial predictors have little influence and show multicollinearity with relative humidity. Our research suggests that urban land management in the 21st century provides key information for adaptation and mitigation strategies aimed at coping with global and local climate variations in the cities of the Tropical Andes. © 2022 Elsevier B.V.

No Thumbnail Available
Publication

Mapping 50 years of contribution to the development of soil quality biological indicators

2023 , Bonilla Bedoya, Santiago , Valencia K. , Herrera M.Á. , López-Ulloa M. , Donoso D.A. , Macedo Pezzopane J.E.

Biological indicators of soil quality express the capacity of a soil to maintain its ecosystem functions and services between socio-ecosystem inflection thresholds; therefore, they are determinants in management and land use decisions. However, their development until a few decades ago was limited for several reasons: reductionism and early development of other dimensions, such as physical and chemical indicators or their methodological complexity, thus affecting the importance given to biological factors and the integral evaluation of soil quality or health. Thus, this review presents a mapping of the scientific contributions of the last 50 years oriented to the theoretical and methodological development of biological indicators of soil quality, identifying their development and application in these decades. We conducted a bibliometric analysis that allowed us to present an overview of the field with respect to scientific production: temporality, geographical origin, institutional origin, journals that promote the development of the field, articles with greater influence by citation in the field of study, and the co-occurrences of these indicators in research. This analysis was complemented at the second stage by a systematic review of the literature with the greatest impact by citation. We found 2320 scientific papers distributed mainly in the United States (17.8%), China (12.2%), Brazil (8.3%), India (6.3%), and European Mediterranean countries, such as Spain, France, and Italy (14.2%). Our review showed 25 biological indicators with the highest occurrence; for example, microbial biomass (1 1 8), enzymatic activity (90), and organic matter (78); other indicators, such as earthworms, nematodes, or springtails, are also reported. All indicators showed relationships, to a greater or lesser extent, with soil biodiversity and its functions in the landscape. Important advances in soil indicators have developed gradually in the last few decades, with scientific efforts mainly concentrated in developed and emerging countries. In the last decade, the production curve continues with a growth trend., and research questions in the field revolve around the linkage of diversity and function from a molecular point of view. The scope goes beyond productivity, manifesting the real need to conserve and manage the ecosystem services of a limited and non-renewable natural resource. Pioneering research should begin to report on the scope of soil biological monitoring and its influence on policy, management, and land use. Finally, the promotion of research networks with developing countries can foster the development of regional and local soil monitoring policies in these regions. © 2023 The Author(s)

No Thumbnail Available
Publication

Exploring Wardriving Potential in the Ecuadorian Amazon for Indirect Data Collection

2021 , Santos F. , Pesantes P. , Bonilla Bedoya, Santiago

Digital inclusion in the Ecuadorian amazon is known as a problem, which intensified with the pandemic. Since social distance is now the norm, we constructed a WiFi access point (WAP) scanner to map and analyze its data. We correlated it with ancillary geoinformation to observe its potential and limitations as a method for indirect data collection. Our result indicate that WAP correlate weakly but positively with nightlight, young population, accessibility to economical centres, and negatively with slope. Moreover, we differentiated vulnerability naming patters from Service Set Identifiers (SSDI) and differentiated the number of WAPs according to land cover for differentiate urban from rural areas. This output is now offering increasing applications to get updated rought estimates of internet activity and indirectly correlations to socio-economic conditions, technology practices, and opportunities for natural language processing. Therefore, we conclude that wardriving offer interesting opportunities for mapping social data but also concerns as an indirect data collection method. © Published under licence by IOP Publishing Ltd.

No Thumbnail Available
Publication

Sentinel satellite data monitoring of air pollutants with interpolation methods in Guayaquil, Ecuador

2023 , Mejía C. D. , Alvarez H. , Zalakeviciute R. , Macancela D. , Sanchez C. , Bonilla Bedoya, Santiago

In Ecuador, there is a limitation on air quality monitoring due to the cost of monitoring networks. Although air quality monitoring stations are instruments for air measurement, they do not cover an entire city due to their scope. Satellite remote sensing is now an effective tool to study atmospheric pollutants and has been applied to continuously assess a region and overcome the limitations of fixed stations. Despite the application of satellite data for air quality monitoring, there are some limitations, such as measurement frequency, cloud cover and wide spatial resolution, which do not allow the assessment of air pollution in cities. Therefore, downscaling, applying interpolation methods, is essential for continuous air quality monitoring at smaller scales. For this research, Nitrogen Dioxide (NO2) data from the Sentinel-5 satellite percussor was used in the city of Guayaquil for January–December 2020, which is considered before, during and after the COVID-19 quarantine. This mid-size port city does not have a permanent monitoring network, which prevents us from knowing the air quality. Due to the limitation of pixel size, this study used satellite data to apply interpolation techniques and reduce pixels to assess air quality. Two categories of interpolation were selected: deterministic and stochastic. The empirical Bayesian kriging (EBK) interpolation obtained a R2 of 0.9546, which was superior to the other methods applied. Therefore, the EBK method had the best accuracy for tropospheric NO2 concentration. Finally, the method used in this research can help monitor air quality in cities lacking continuous monitoring networks, as the reduction of the pixel size gives us a better pattern of pollutants. © 2023 The Authors

No Thumbnail Available
Publication

Urban socio-ecological dynamics: applying the urban-rural gradient approach in a high Andean city

2020 , Bonilla Bedoya, Santiago , Estrella A. , Vaca Yánez A. , Herrera M.Á.

The urban-rural dichotomy and the simple cause-effect relationship do not allow establishing specific criteria for territorial management from a socio-ecological perspective. The gradient approach could be a powerful tool to understand urban socio-ecological dynamics. This research applied a methodological protocol to obtain urban-rural gradients while considering the specific characteristics of a mid-size Andean city. To achieve this goal, a mixed classification process was applied to a Landsat 8 image. Subsequently, a factor analysis (FA) grouped 25 urbanisation variables. Finally, we applied agglomerative hierarchical clustering. FA established four factors that explained (72%) of the urbanisation metrics’ variation. From this information, we obtained factor maps and a gradient map. The resulting map differentiated six gradients that contrast with the city’s territorial planning based on the urban-rural dichotomy. This study is a starting point to apply the gradient approach in land-use management and urban ecology planning for Andean cities. © 2019, © 2019 Landscape Research Group Ltd.

No Thumbnail Available
Publication

The conflict between Rights of Nature and mining in Ecuador: Implications of the Los Cedros Cloud Forest case for biodiversity conservation

2024 , Peck M.R. , Desselas M. , Bonilla Bedoya, Santiago , Redín G. , Durango-Cordero J.

Global emergence of Rights of Nature (RoN) has gained momentum since Ecuador became the first country to constitutionally recognize it in 2008. The shift from perceiving nature as an object, to granting it legal subjecthood, can revolutionize protection of ecological systems. In 2021, Ecuador's Constitutional Court issued a landmark ruling, halting mining in the Los Cedros Protected Forest. Three pillars form the basis for legal protection of Los Cedros: (i) the right to timely, Free Prior Informed Environmental Consultation, (ii) application of the Precautionary Principle in risk to RoN, and (iii) the Right to Water. We analyse the Court ruling to identify legal frameworks applied then map and rank mining risk to other protected forests, Indigenous territories, unprotected native ecosystems, biodiversity and areas of water resource conflict to determine potential scale of conflict between mining and RoN. 7813 mining concessions of 22,812km2 overlay 9.2% of Ecuadorian mainland, 2323 concessions (29.7%) overlap 16,081km2 of protected forest (4781 km2, 20%), Indigenous territory (6473 km2, 8%) and native vegetation outside protected areas and Indigenous territories (13,390 km2, 9%). With 80% of their protected forests at risk from large-scale mining, the most impacted Indigenous communities are the Shuar. Synthesis and applications: The Los Cedros legal case in Ecuador sets a precedent for using RoN to challenge mining in 4781 km2 of similar Protected Forest, with potential to protect an additional 16,081 km2 of Indigenous lands and biologically important ecosystems. However, lack of biological data for these areas will necessitate extensive data collection, possibly through community-empowering citizen science. Our study emphasizes the urgent need to integrate indigenous and traditional ecological knowledge (ITEK), law and ecology. We propose a new transdisciplinary field of ‘ecological forensics’ to support nature protection within the RoN framework. Our research also identifies areas where RoN could effectively protect nature and that are likely to be of high investment risk for the mining industry. The final recommendation is to reconsider mining concessions in Ecuador, especially in ecologically sensitive areas, Indigenous territories, high biodiversity areas, and regions with water resource conflicts, to maintain ecological integrity and social harmony. Read the free Plain Language Summary for this article on the Journal blog. © 2024 The Authors. People and Nature published by John Wiley & Sons Ltd on behalf of British Ecological Society.