Now showing 1 - 10 of 29
No Thumbnail Available
Publication

Mechanical Design of a Spatial Mechanism for the Robot Head Configuration in Social Robotics

2020 , Alvarez-Tello, Jorge , Zapata, Mireya , Paillacho D.

The manuscript presents the mechanical design of the head configuration in the Human Robot Interaction (HRI) used for the message transmission of emotions through nonverbal communications styles. The evolution of this structure results on a natural movement reproduction for the implementation of non-verbal communication strategies in a normal behavior, achieve the main patterns to evaluate the social interaction with the robotic platform. The mechanical design result from a biomechanical evaluation of the Pitch, Roll, and Yaw trajectories of the human head and neck. The spatial mechanisms, according to the Grübber formula for Spatial Robots, allows 4 degrees of freedom. The spatial chain has universal, prismatic, spiral and revolute joins of the mechanical model-ling. This CAD model permit the 3D print of cardan elements to performance the structure of the mechanisms. The appearance is friendly and the interface reach similar capabilities than a human would have for communication. Finally, human interaction through the head movement gives the opportunity in the future for the evaluation of more parameters of the social robotic interaction between robots-humans and robots-robots. © Springer Nature Switzerland AG 2020.

No Thumbnail Available
Publication

Design and Implementation of a Wastewater Heat Recovery System Prototype for Electric Showers in Quito-Ecuador

2020 , Remache Vinueza, Byron , Calderón G.E. , Zapata, Mireya

A wastewater heat recovery system was designed and implemented in the city of Quito - Ecuador. The prototype consists of adapting a heat exchanger to recover energy from wastewater and preheat the water that enters an electric shower. A temperature control system was designed and adapted to work based on a preset comfort temperature. A procedure for the manufacture of copper U-pipe fittings was developed for the construction of the heat exchanger coil, which consists of freezing water inside the pipe so that when rolled it avoids crushing and excessive loss of the inner diameter. Results show that for an average family of 4 members a reduction of energy consumption by 57% is possible. For the case of Ecuador, a reduction of 56.69 Mt of equivalent CO2 emissions was estimated if the system was implemented across the country. A payback period of 8.35 years was calculated for the initial investment. © 2020, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Low-Cost Human–Machine Interface for Computer Control with Facial Landmark Detection and Voice Commands

2022 , Ramos, P. , Zapata, Mireya , Valencia, K. , Vargas, V. , Ramos Galarza, Carlos

Nowadays, daily life involves the extensive use of computers, since human beings are immersed in a technological society. Therefore, it is mandatory to interact with computers, which represents a true disadvantage for people with upper limb disabilities. In this context, this work aims to develop an interface for emulating mouse and keyboard functions (EMKEY) by applying concepts of artificial vision and voice recognition to replace the use of hands. Pointer control is achieved by head movement, whereas voice recognition is used to perform interface functionalities, including speech-to-text transcription. To evaluate the interface’s usability and usefulness, two studies were carried out. The first study was performed with 30 participants without physical disabilities. Throughout this study, there were significant correlations found between the emulator’s usability and aspects such as adaptability, execution time, and the participant’s age. In the second study, the use of the emulator was analyzed by four participants with motor disabilities. It was found that the interface was best used by the participant with cerebral palsy, followed by the participants with upper limb paralysis, spina bifida, and muscular dystrophy. In general, the results show that the proposed interface is easy to use, practical, fairly accurate, and works on a wide range of computers. © 2022 by the authors.

No Thumbnail Available
Publication

Optimizing Agriculture with LoRaWAN and HCI: A Smart Approach to Sustainable Farming

2025 , Valencia-Aragón, Kevin , Zapata, Mireya , Cristopher Toapanta , Arias Flores, Hugo Patricio

Modern agriculture faces challenges including water scarcity, excessive fertilizer use, and limited connectivity in rural areas, all exacerbated by climate change. This paper presents a smart agriculture system leveraging LoRaWAN technology and human-computer interfaces (HCI) to address these issues. The proposed system integrates low-cost sensors, a LoRaWAN-based network, and a user-friendly dashboard for real-time monitoring of critical variables such as soil moisture, ambient humidity and temperature. A proof-of-concept implementation demonstrates the system’s effectiveness in optimizing water and fertilizer use while maintaining scalability for large agricultural operations. The system operates reliably within rural environments without relying on traditional internet infrastructure, offering an affordable and sustainable solution. Field tests validate the system’s performance, highlighting its potential to enhance decision-making and resource efficiency in floriculture and beyond. Future work aims to expand the system’s capabilities with additional sensors, artificial intelligence for predictive analytics, and automated control mechanisms, further supporting sustainable farming practices

No Thumbnail Available
Publication

Real-time execution of SNN models with synaptic plasticity for handwritten digit recognition on SIMD hardware

2024 , Bernardo Vallejo-Mancero , Jordi Madrenas , Zapata, Mireya

Recent advancements in neuromorphic computing have led to the development of hardware architectures inspired by Spiking Neural Networks (SNNs) to emulate the efficiency and parallel processing capabilities of the human brain. This work focuses on testing the HEENS architecture, specifically designed for high parallel processing and biological realism in SNN emulation, implemented on a ZYNQ family FPGA. The study applies this architecture to the classification of digits using the well-known MNIST database. The image resolutions were adjusted to match HEENS' processing capacity. Results were compared with existing work, demonstrating HEENS' performance comparable to other solutions. This study highlights the importance of balancing accuracy and efficiency in the execution of applications. HEENS offers a flexible solution for SNN emulation, allowing for the implementation of programmable neural and synaptic models. It encourages the exploration of novel algorithms and network architectures, providing an alternative for real-time processing with efficient energy consumption.

No Thumbnail Available
Publication

Design and evaluation of a heuristic optimization tool based on evolutionary grammars using PSoCs

2020 , Vallejo Mancero B. , Zapata, Mireya , Topón-Visarrea L. , Malagón P.

Currently, the evolutionary computing techniques are increasingly used in different fields, such as optimization, machine learning, and others. The starting point of the investigation is a set of optimization tools based on these techniques and one of them is called evolutionary grammar [1]. It is a evolutionary technique derived from genetic algorithms and used to generate programs automatically in any type of language. The present work is focused on the design and evaluation of hardware acceleration technique through PSoC, for the execution of evolutionary grammar. For this, a ZYNQ development platform is used, in which the logical part is used to implement factory modules and independents hardware blocks made up of a soft-processor, memory BRAM, and a CORDIC module developed to perform arithmetic operations. The processing part is used for the execution of the algorithm. Throughout the development, the procedures and techniques used for hardware and software design are specified, and the viability of the implementation is analyzed considering the comparison of the algorithm execution times in Java versus the execution times in Hardware. © Springer Nature Switzerland AG 2020.

No Thumbnail Available
Publication

MobileTestPro: Testing Framework for Mobile Application

2025 , Jorge Romero-Collaguazo , Danilo Martinez , Zapata, Mireya , Xavier Ferre

In the last decade, both the mobile market and app development have seen exponential growth, with millions of apps in online stores and billions of downloads recorded. Several development processes are used for app development, with agile approaches being the best fit for the market model. However, there is a weakness in testing activities and tasks. To provide a tool to improve software quality, we present a proposal for a framework for software testing in apps. Our proposal combines a series of tools used to evaluate an application in key areas such as consistency, security, compatibility, stress, among others, the development activities that provide a deliverable, and Mobile Ilities. To evaluate the feasibility of using the proposal, a toy app was used. The results reflect situations where the app’s behavior is not desired and its relationship with mobile ilities. The main contribution of the paper is to guide app developers in evaluating apps and contributing to improving app quality.

No Thumbnail Available
Publication

Real-Time Adaptive Physical Sensor Processing with SNN Hardware

2023 , Madrenas J. , Vallejo-Mancero B. , Oltra-Oltra J.À. , Zapata, Mireya , Cosp-Vilella J. , Calatayud R. , Moriya S. , Sato S.

Spiking Neural Networks (SNNs) offer bioinspired computation based on local adaptation and plasticity as well as close biological compatibility. In this work, after reviewing the Hardware Emulator of Evolving Neural Systems (HEENS) architecture and its Computer-Aided Engineering (CAE) design flow, a spiking implementation of an adaptive physical sensor input scheme based on time-rate Band-Pass Filter (BPF) is proposed for real-time execution of large dynamic range sensory edge processing nodes. Simulation and experimental results of the SNN operating in real-time with an adaptive-range accelerometer input example are shown. This work opens the path to compute with SNNs multiple physical sensor information for perception applications. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Attentional responses in toddlers: A protocol for assessing the impact of a robotic animated animal and a real dog

2025 , Zapata, Mireya , Ramos Galarza, Carlos , Kevin Valencia-Aragón , Jorge Alvarez-Tello , Maheshkumar Baladaniya

Attentional processes in toddlers are characterized by a state of alertness in which they focus their waking state for short periods. It is essential to develop assessment and attention stimulation protocols from an early age to improve this cognitive function and detect possible deficits in the early stages of cognitive development. Methods: This protocol-based article presents a technological approach to assessing the impact of two animated stimuli on toddlers’ attention. The protocol involves presenting a robotic and a real dog to evaluate attentional activation in early development. This dual-stimulus framework may also inform therapeutic and educational programs aimed at fostering cognitive growth in early childhood. Discussion: This protocol contributes to assessing physiological attentional responses in toddlers, offering insights into attention evaluation and stimulation during early cognitive development. By incorporating both a robotic and a live dog, it enables the exploration of individual differences in attentional engagement and identifies which stimulus elicits a stronger response.

No Thumbnail Available
Publication

Real-time hardware emulation of neural cultures: A comparative study of in vitro, in silico and in duris silico models

2024 , Bernardo Vallejo-Mancero , Sergio Faci-Lázaro , Zapata, Mireya , Jordi Soriano , Jordi Madrenas

Biological neural networks are well known for their capacity to process information with extremely low power consumption. Fields such as Artificial Intelligence, with high computational costs, are seeking for alternatives inspired in biological systems. An inspiring alternative is to implement hardware architectures that replicate the behavior of biological neurons but with the flexibility in programming capabilities of an electronic device, all combined with a relatively low operational cost. To advance in this quest, here we analyze the capacity of the HEENS hardware architecture to operate in a similar manner as an in vitro neuronal network grown in the laboratory. For that, we considered data of spontaneous activity in living neuronal cultures of about 400 neurons and compared their collective dynamics and functional behavior with those obtained from direct numerical simulations (in silico) and hardware implementations (in duris silico). The results show that HEENS is capable to mimic both the in vitro and in silico systems with high efficient-cost ratio, and on different network topological designs. Our work shows that compact low-cost hardware implementations are feasible, opening new avenues for future, highly efficient neuromorphic devices and advanced human–machine interfacing.