Now showing 1 - 7 of 7
No Thumbnail Available
Publication

Forests and urban green areas as tools to address the challenges of sustainability in Latin American urban socio-ecological systems

2020 , Bonilla Bedoya, Santiago , Estrella A. , Santos F. , Herrera M.Á.

One sustainability challenge is confronting the process of global urbanization considering wellbeing and environmental justice. Integrating different disciplines to describe and analyze the relationships of urban socio-ecological systems gives us useful empirical tools to formulate policies and programs in urban planning considering their spatial dimension. The objective of this study is to present a model that integrates and explains the socio-ecological urban relations of a Latin American city considering three high-level approaches: forestry, geography, and psychology. Thus, we defined four factors: a) urban forest and green areas; b) urban spatial segregation; c) perceived restoration; and d) subjective wellbeing. For these, we grouped 16 measured variables and collected them with three specific procedures: a) SPOT remote sensors and object-based classification of urban coverage; b) analysis of geospatial data with census information; and c) field surveys. We applied descriptive multivariate statistics and also proposed a structural equation model (SEM) that integrates all the variables and data. We found that the factor “urban green areas” had a direct positive relationship with the factors “urban spatial segregation” and “perceived restoration.” We observed that urban green areas were meeting spaces between different socioeconomic categories, reducing segregation and multiplying opportunities for the psychological restoration of citizens. However, we found no evidence that green areas are related to subjective wellbeing. The model quantified the socio-ecological relationships produced by combining various factors of urban socio-ecological systems, suggesting the benefits of this method to generate knowledge towards planning and managing Latin American cities. Our results are encouraging in terms of environmental justice and wellbeing. In developing countries where forecasts indicate rising urban populations, the need to establish planning processes based on scientific information is vital to meet the challenges of sustainability in the twenty-first century. © 2020 Elsevier Ltd

No Thumbnail Available
Publication

Socioecological system and potential deforestation in Western Amazon forest landscapes

2018 , Bonilla Bedoya, Santiago , Estrella-Bastidas A. , Molina J.R. , Herrera M.Á.

The ecosystem services provided by tropical forests are affected by deforestation. Territorial management strategies aim to prevent and mitigate forest loss. Therefore, modeling potential land use changes is important for forest management, monitoring, and evaluation. This study determined whether there are relationships between forest vulnerability to deforestation (potential deforestation distribution) and the forest management policies applied in the Ecuadorian Amazon. Proxy and underlying variables were used to construct a statistical model, based on the principle of maximum entropy that could predict potential land use changes. Entropy can be seen as a measure of uncertainty for a density function. Receiver operating characteristics (ROC) analysis and the Jackknife Test were used to validate the model. The importance of input variables in the model was determined through: Percent Contribution (PC) and Permutation Importance (PI). The results were compared with prevailing regional forest management strategies. The socioeconomic variables that provided the largest amount of information in the overall model (AUC = 0.81) and that showed most of the information not present in other variables were: “Protected areas-Intangible zone” (PC = 24%, PI = 12.4%), “timber harvesting programs” (PC = 21.7%, PI = 4.7%), “road network” (PC = 18.9%, PI = 7.7%), and “poverty rate” (PC = 3.7%, PI = 6.1%). Also, the biophysical variable “temperature” (PC = 7,9%, PI = 22.3%) provided information in the overall model. The results suggested the need for changes in forest management strategies. Forest policies and management plans should consider integrating and strengthening protected areas and intangible zones, as well as restricting timber harvesting in native forest and establishing forest areas under permanent management. Furthermore, the results also suggested that financial incentive programs to reduce deforestation have to be evaluated because their present distribution is inefficient. In this context, conservation incentive plans need to be revised so that they focus on areas at deforestation risk. © 2018 Elsevier B.V.

No Thumbnail Available
Publication

Urban soils as a spatial indicator of quality for urban socio-ecological systems

2021 , Bonilla Bedoya, Santiago , López-Ulloa M. , Mora-Garcés A. , Macedo-Pezzopane J.E. , Salazar L. , Herrera M.Á.

The development of criteria and indicators to quantify the transition to sustainability of the urban socio-ecological systems quality is determinant for planning policies and the 21st century urban agenda. This study models the spatial variation in the concentration and distribution of some macronutrients, micronutrients, and trace nutrients in the soil of a high-altitude city in the Andes. Meanwhile, machine learning methods were employed to study some interactions between the different dimensions that constitute an urban socio-ecosystem that caused these variations. We proposed a methodology that considered two phases: a) field work to collect data on 300 soil samples; laboratory analysis to measure the concentrations of 24 macronutrients, micronutrients, and trace nutrients; and the design of geophysical, spectral, and urban co-variables; b) statistical and geo-informatics analysis, where multivariate analysis grouped the elements into factors; and, machine learning integrated with co-variables was applied to derive the intensity of each factor across the city. Multivariate statistics described the variation in soil co-concentrations with a moderate percentage (42%). Four factors were determined that grouped some of the analyzed elements, as follows: F1 (Zn, S, Cu, Pb, Ni, and Cr), F2 (Ba, Ag, K, In, and Mg), F3 (B, V, Li, and Sr), and F4 (Si and Mn). The percentage R2 out-of-bag of the spatial model were: F1 = 20%, F2 = 8%, F3 = 14%, and F4 = 10%. Our outputs show that the enrichment and contamination by anthropogenic factors, such as the increase in population density, land use, road network, and traffic generated by fossil fuel vehicles, should be prioritized in urban planning decisions. © 2021

No Thumbnail Available
Publication

Mapping 50 years of contribution to the development of soil quality biological indicators

2023 , Bonilla Bedoya, Santiago , Valencia K. , Herrera M.Á. , López-Ulloa M. , Donoso D.A. , Macedo Pezzopane J.E.

Biological indicators of soil quality express the capacity of a soil to maintain its ecosystem functions and services between socio-ecosystem inflection thresholds; therefore, they are determinants in management and land use decisions. However, their development until a few decades ago was limited for several reasons: reductionism and early development of other dimensions, such as physical and chemical indicators or their methodological complexity, thus affecting the importance given to biological factors and the integral evaluation of soil quality or health. Thus, this review presents a mapping of the scientific contributions of the last 50 years oriented to the theoretical and methodological development of biological indicators of soil quality, identifying their development and application in these decades. We conducted a bibliometric analysis that allowed us to present an overview of the field with respect to scientific production: temporality, geographical origin, institutional origin, journals that promote the development of the field, articles with greater influence by citation in the field of study, and the co-occurrences of these indicators in research. This analysis was complemented at the second stage by a systematic review of the literature with the greatest impact by citation. We found 2320 scientific papers distributed mainly in the United States (17.8%), China (12.2%), Brazil (8.3%), India (6.3%), and European Mediterranean countries, such as Spain, France, and Italy (14.2%). Our review showed 25 biological indicators with the highest occurrence; for example, microbial biomass (1 1 8), enzymatic activity (90), and organic matter (78); other indicators, such as earthworms, nematodes, or springtails, are also reported. All indicators showed relationships, to a greater or lesser extent, with soil biodiversity and its functions in the landscape. Important advances in soil indicators have developed gradually in the last few decades, with scientific efforts mainly concentrated in developed and emerging countries. In the last decade, the production curve continues with a growth trend., and research questions in the field revolve around the linkage of diversity and function from a molecular point of view. The scope goes beyond productivity, manifesting the real need to conserve and manage the ecosystem services of a limited and non-renewable natural resource. Pioneering research should begin to report on the scope of soil biological monitoring and its influence on policy, management, and land use. Finally, the promotion of research networks with developing countries can foster the development of regional and local soil monitoring policies in these regions. © 2023 The Author(s)

No Thumbnail Available
Publication

Urban socio-ecological dynamics: applying the urban-rural gradient approach in a high Andean city

2020 , Bonilla Bedoya, Santiago , Estrella A. , Vaca Yánez A. , Herrera M.Á.

The urban-rural dichotomy and the simple cause-effect relationship do not allow establishing specific criteria for territorial management from a socio-ecological perspective. The gradient approach could be a powerful tool to understand urban socio-ecological dynamics. This research applied a methodological protocol to obtain urban-rural gradients while considering the specific characteristics of a mid-size Andean city. To achieve this goal, a mixed classification process was applied to a Landsat 8 image. Subsequently, a factor analysis (FA) grouped 25 urbanisation variables. Finally, we applied agglomerative hierarchical clustering. FA established four factors that explained (72%) of the urbanisation metrics’ variation. From this information, we obtained factor maps and a gradient map. The resulting map differentiated six gradients that contrast with the city’s territorial planning based on the urban-rural dichotomy. This study is a starting point to apply the gradient approach in land-use management and urban ecology planning for Andean cities. © 2019, © 2019 Landscape Research Group Ltd.

No Thumbnail Available
Publication

Modelling the relationship between urban expansion processes and urban forest characteristics: An application to the Metropolitan District of Quito

2020 , Bonilla Bedoya, Santiago , Mora A., Vaca A. , Estrella A. , Herrera M.Á.

The rapid process of global urbanisation engenders changes in urban socio-ecological systems and in the landscape structure. However, the future processes of urban expansion in Latin American cities has been little studied even though the wellbeing of its citizens will depend on territorial management and on planning the provision of ecosystemic benefits and services. This research, considering different socio-ecological dimensions, proposed to determine the causes of potential urban expansion, analysing the dimensions and possible predictors that would explain the expansion of a high Andean city and its influence on peri-urban forest landscapes. To develop a model that integrates the complexity of the system, we used the following five dimensions: biophysics, land cover and management, infrastructure and services, socio-economics, and landscape metrics, and we opted for a binomial analysis through a spatial logistic regression model developed from 33 predictors. Considering the odd radio of the model, we observe that the independent increase in predictors, including building blocks, drinking water, sewerage, waste collection, average land size, the Interspersion and Juxtaposition Index (IJI) and Largest Patch Index (LPI), and the constant behaviour of the others predictors, would increase the probability of a potential urbanisation of the territory. Similarly, the independent increase in predictors, including the presence of protected areas, the presence of protected forests, land cover, unemployment, and the Shannon Diversity Index(SHDI), reduce the probability of the urbanisation process. Our results suggest that the territorial vulnerability from a potential urbanisation process is strongly related to an increase in infrastructure, services, and the average size of properties variables. Moreover, the landscape with the greatest potential for urbanisation presents an adequate intercalation of the different patches that compose it. However, the presence of variables such as protected areas and protective forests, in addition to monitoring indicators such as landscape diversity and mitigation strategies, could be considered to focus the analysis on the current dynamics of urbanisation processes in Latin America. © 2019 Elsevier Ltd

No Thumbnail Available
Publication

Spatiotemporal variation of forest cover and its relation to air quality in urban Andean socio-ecological systems

2021 , Bonilla Bedoya, Santiago , Zalakeviciute R. , Coronel D.M. , Durango-Cordero J. , Molina J.R. , Macedo-Pezzopane J.E. , Herrera M.Á.

Confronting the dynamics of global urbanization is one of the challenges of sustainability in the 21st century. Latin America is expected to be one of the regions with the highest urban growth; however, research related to variations in urban land coverage and air quality is relatively new, despite its importance for urban planning and citizens well-being. This study determines the relationship between the spatial variability of some atmospheric pollutants and changes in land cover in a Andean mountain cities of Latin American. We quantified the changes and transitions of land cover using SPOT optical images and generating an object-based classification. In addition, we identified variations in the mean concentrations of some atmospheric pollutants; and, finally, using various linear regression models, we explained the relationship between the spatiotemporal variation of atmospheric pollutants with the spatiotemporal variations of the land cover and some meteorological and topographical factors. Changes in land cover indicated an increase of impervious cover and a loss of urban non-forest vegetation. However, there was also an increase in forest fragments and urban woodland to the detriment of green areas and shrubbery. On the other hand, the concentrations of the air pollutants CO, O3, and PM2.5 showed significant variations between periods, reducing their concentrations in the air. Finally, land cover such as forests and urban trees, as well as meteorological and topographical factors were associated with and explained (r2 > 0.6) the spatiotemporal variation of air pollutants. Urban green infrastructure management in developing regions should consider a multidisciplinary approach to achieve an equitable and minimum distribution of local green infrastructure; by promoting conditions that allow the conversion of land use and coverage, in order to maximize the benefits and the ecosystemic forest services that a city demands. © 2021 Elsevier GmbH