2024 2024 2023 2023 2022 2022 2021 2021 2020 2020 2019 2019 2018 2018 2017 2017 2016 2016 2015 2015 0 0 5 5 10 10 15 15 20 20 25 25
Now showing 1 - 10 of 186
No Thumbnail Available
Publication

Unusual records of Cochlearius cochlearius (Linnaeus, 1766) (Aves: Ardeidae) in the Andes of Ecuador

2014 , Bahamonde-Vinueza D. , Cadena-Ortiz H. , Cajas-Bermeo C. , Bonaccorso E.

We report two high altitude sightings of Boat-billed Heron in the Andes of Ecuador. Based on identification and the localities were the sightings were reported, we suggest that both individuals belong to the Amazonian population of this species. © 2014 Check List and Authors.

No Thumbnail Available
Publication

Trees of Amazonian Ecuador: a taxonomically verified species list with data on abundance and distribution

2019 , Guevara Andino J.E. , Pitman N.C.A. , Ulloa Ulloa C. , Romoleroux K. , Fernández-Fernández D. , Ceron C. , Palacios W. , Neill D.A. , Oleas Gallo, Nora Helena , Rivas Torres G. , Altamirano P. , ter Steege H.

We compiled a data set for all tree species collected to date in lowland Amazonian Ecuador in order to determine the number of tree species in the region. This data set has been extensively verified by taxonomists and is the most comprehensive attempt to evaluate the tree diversity in one of the richest species regions of the Amazon. We used four main sources of data: mounted specimens deposited in Ecuadorian herbaria only, specimen records of a large-scale 1-hectare-plot network (60 plots in total), data from the Missouri Botanical Garden Tropicos® database (MO), and literature sources. The list of 2,296 tree species names we provide in this data set is based on 47,486 herbarium records deposited in the following herbaria: Alfredo Paredes Herbarium (QAP), Catholic University Herbarium (QCA), Herbario Nacional del Ecuador (QCNE), Missouri Botanical Garden (MO), and records from an extensive sampling of 29,768 individuals with diameter at breast height (dbh) ≥10 cm recorded in our plot network. We also provide data for the relative abundance of species, geographic coordinates of specimens deposited in major herbaria around the world, whether the species is native or endemic, current hypothesis of geographic distribution, representative collections, and IUCN threat category for every species recorded to date in Amazonian Ecuador. These data are described in Metadata S1 and can be used for macroecological, evolutionary, or taxonomic studies. There are no copyright restrictions; data are freely available for noncommercial scientific use (CC BY 3.0). Please see Metadata S1 (Class III, Section B.1: Proprietary restrictions) for additional information on usage. © 2019 The Authors. Ecology © 2019 The Ecological Society of America

No Thumbnail Available
Publication

Urban soil management in the strategies for adaptation to climate change of cities in the Tropical Andes

2022 , Bonilla Bedoya, Santiago , Ángel Herrera, M. , Vaca, A. , Salazar, L. , Zalakeviciute, R. , Mejía, D. , López-Ulloa, M.

The unique characteristics of a city amplify the impacts of climate change; therefore, urban planning in the 21st century is challenged to apply mitigation and adaptation strategies that ensure the collective well-being. Despite advances in monitoring urban environmental change, research on the application of adaptation-oriented criteria remains a challenge in urban planning in the Global South. This study proposes to include urban land management as a criterion and timely strategy for climate change adaptation in the cities of the Tropical Andes. Here, we estimate the distribution of the soil organic carbon stock (OCS) of the city of Quito (2,815 m.a.s.l.; population 2,011,388; 197.09 km2) in the following three methodological moments: i) field/laboratory: city-wide sampling design established to collect 300 soil samples (0–15 cm) and obtain data on organic carbon (OC) concentrations in addition to 30 samples for bulk density (BD); ii) predictors: geographic, spectral and anthropogenic dimensions established from 17 co-variables; and iii) spatial modeling: simple multiple regression (SMRM) and random forest (RFM) models of organic carbon concentrations and density as well as OCS stock estimation. We found that the spatial modeling techniques were complementary; however, SMRM showed a relatively higher fit both (OC: r2 = 20%, BD: r2 = 16%) when compared to RFM (OC: r2 = 8% and BD: r2 = 5%). Thus, soil carbon stock (0–0.15 m) was estimated with a spatial variation that fluctuated between 9.89 and 21.48 kg/m2; whereas, RFM showed fluctuations between 10.38 and 17.67 kg/m2. We found that spatial predictors (topography, relative humidity, precipitation, temperature) and anthropogenic predictors (population density, roads, vehicle traffic, land cover) positively influence the model, while spatial predictors have little influence and show multicollinearity with relative humidity. Our research suggests that urban land management in the 21st century provides key information for adaptation and mitigation strategies aimed at coping with global and local climate variations in the cities of the Tropical Andes. © 2022 Elsevier B.V.

No Thumbnail Available
Publication

Minimum temperature drives community leaf trait variation in secondary montane forests along a 3000-m elevation gradient in the tropical Andes

2021 , Llerena-Zambrano M. , Ordoñez J.C. , Llambí L.D. , van der Sande M. , Pinto E. , Salazar L. , Cuesta F.

Background: Leaf functional traits (LFT) influence resource acquisition and are important for understanding ecosystem processes. Climate and land use are key filters of community composition and LFT, however, how the relative importance of these filter changes with elevation has been little studied in the Andes. Aims: To gain insight into the functional response of Andean forests to climate and disturbance in naturally regenerated forest stands. Methods: We measured leaf blade thickness (LBT), leaf area (LA), specific leaf area (SLA), and leaf dry matter content (LDMC) from 13 secondary forest communities, along a 3000-m elevation transect. We derived basal area-weighted mean community (CWM) trait values to assess the effect of climate and disturbance on the functional structure of regenerating tree communities. Results: Community LFT progressively shifted along the elevation gradient driven by changes in temperature and successional stages towards communities with thicker leaves with low SLA. Reduction in LDMC with elevation suggested that both succulence and sclerophylly were important strategies in these forests. Conclusions: Our findings reinforce the validity of LFT as a powerful predictor to explore the ecological strategies of tree species in climate scenarios. Warmer conditions could result in a shift from slower to faster resource acquisition strategies at higher elevations. © 2021 Botanical Society of Scotland and Taylor & Francis.

No Thumbnail Available
Publication

A revision of species diversity in the neotropical genus Oreobates (Anura: Strabomantidae), with the description of three new species from the amazonian slopes of the andes

2012 , Padial J.M. , Chaparro J.C. , Castroviejo-Fisher S. , Guayasamin, Juan M. , Lehr E. , Delgado A.J. , Vaira M. , Teixeira M. , Aguayo R. , Riva I.D.L.

We revisit species diversity within Oreobates (Anura: Strabomantidae) by combining molecular phylogenetic analyses of the 16S rRNA amphibian barcode fragment with the study of the external morphology of living and preserved specimens. Molecular and morphological evidence support the existence of 23 species within Oreobates, and three additional candidate species (Oreobates sp. [Ca JF809995], Oreobates sp. [Ca EU368903], Oreobates cruralis [Ca EU192295]). We describe and name three new species from the Andean humid montane forests of Departamento Cusco, southern Peru: O. amarakaeri New Species from Río Nusinuscato and Río Mabe, at elevations ranging from 670 to 1000 m in the Andean foothills; O. machiguenga, new species, from Río Kimbiri (1350 m), a small tributary of the Apurimac River, in the western versant of Cordillera Vilcabamba; and O. gemcare, new species, from the Kosipata Valley at elevations ranging from 2400 to 2800 m. The three new species are readily distinguished from all other Oreobates by at least one qualitative morphological character. Three species are transferred to Oreobates from three genera of Strabomantidae: Hypodactylus lundbergi Pristimantis crepitans, and Phrynopus ayacucho (for which the advertisement call, coloration in life, and male characteristics are described for first time). Oreobates simmonsi is transferred to the genus Lynchius. Hylodes verrucosus is considered a junior synonym of Hylodes philippi. In addition, H. philippi is removed from the synonymy of O. quixensis and considered a nomem dubium within Hypodactylus. The inclusion of Phrynopus ayacucho in Oreobates extends the ecological range of the genus to the cold Andean puna. Oreobates is thus distributed from the Amazonian lowlands in southern Colombia to northern Argentina, reaching the Brazilian Atlantic dry forests in eastern Brazil, across an altitudinal range from ca. 100 to 3850 m. © American Museum of Natural History 2012.

No Thumbnail Available
Publication

The impact of termites on soil sheeting properties is better explained by environmental factors than by their feeding and building strategies

2022 , Jouquet, P. , Harit, A. , Hervé, V. , Moger, H. , Carrijo, T. , Donoso, David , Eldridge, D. , Ferreira da Cunha, H. , Choosai, C. , Janeau, J.-L. , Maeght, J.-L. , Thu, T.D. , Briandon, A. , Skali, M.D. , van Thuyne, J. , Mainga, A. , Pinzon Florian, O.P. , Issa, O.M. , Podwojewski, P. , Rajot, J.-L. , Henri-des-Tureaux, T. , Smaili, L. , Labiadh, M. , Boukbida, H.A.

Termites are key soil bioturbators in tropical ecosystems. Apart from mound nests constructed by some advanced lineages, most of the species use their faeces, oral secretions, debris, or soil aggregates to protect themselves from predators and desiccation when they go out to forage. Although this soil ‘sheeting’ is considered to play a key role in soil functioning, the properties of this termite-made material has been poorly studied. The few available data showed that sheeting properties are highly variable with positive, neutral or negative impacts on soil C and clay content, and consequently on soil aggregate stability. Therefore, the objective of this study was to determine the factors controlling the physical (particle size fractions and structural stability) and chemical (pH, electrical conductivity and carbon content) properties of soil sheeting produced by termite species encompassing all feeding and building categories using a dataset representative of an important diversity of biotopes coming from 21 countries from all continents colonized by termites. We showed that sheeting properties were explained by the properties of their environment, and especially by those of the bulk soil (linear relationships), followed in a lesser extent by the mean annual precipitation and biotope. Classic hypotheses related to termite feeding and building strategies were not hold by our analysis. However, the distinction of termites into fungus-growing and non-fungus growing species was useful when differentiating the impact of termites on soil electrical conductivity, C content, and structural stability. The large variability observed suggests the need to redefine termite functional groups based on their impacts on soil properties using a trait-based approach from morphological, anatomical and/or physiological traits. © 2022 Elsevier B.V.

No Thumbnail Available
Publication

Habitat Restoration in the Context of Watershed Prioritization: The Ecological Performance of Urban Stream Restoration Projects in Portland, Oregon

2015 , Rios-Touma B. , Prescott C. , Axtell S. , Kondolf G.M.

In Portland (Oregon, USA), restoration actions have been undertaken at the watershed scale (e.g. revegetation and stormwater management) to improve water quality and, where water quality and quantity are adequate at the reach scale, to increase habitat heterogeneity. Habitat enhancement in urban streams can be important for threatened species, but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4years post-project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Taxonomic diversity increased after restoration but was still low compared with reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than in the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Habitat variables did not change from pre-project to post-project, so they could not explain community changes. This may have been partly attributable to insensitivity of the visual estimate methods used but likely also reflects the importance of watershed variables on aquatic biota-suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions. © 2014 John Wiley & Sons, Ltd.

No Thumbnail Available
Publication

Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato

2014 , Nadeau N.J. , Ruiz M. , Salazar P. , Counterman B. , Medina J.A. , Ortiz-Zuazaga H. , Morrison A. , McMillan W.O. , Jiggins C.D. , Papa R.

Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data - alignment to a reference genome and de novo assembly - and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. © 2014 Nadeau et al.

No Thumbnail Available
Publication

Multi-scale habitat use analysis and interspecific Ecology of the Critically Endangered Black-breasted Puffleg Eriocnemis nigrivestis

2015 , Guevara E.A. , Bonaccorso E. , Duivenvoorden J.F.

The Black-breasted Puffleg Eriocnemis nigrivestis is a hummingbird endemic to Ecuador and considered Critically Endangered, given its limited distribution, low population numbers, and ongoing habitat degradation. We investigated habitat use patterns using landscape and microhabitat variables. In addition, we explored a previously postulated competition hypothesis involving the Black-breasted Puffleg and the Gorgeted Sunangel Heliangelus strophianus. Our results suggest that landscape variables may play a role in the habitat selection process; specifically the distance to nearest forest border seems to have a significant effect on our habitat model. We speculate that, as the species is known to perform seasonal movements, the avoidance of forest border might reduce the physiological stress caused by altitudinal migration. At microhabitat level, Black-breasted Puffleg seems not sensitive to forest structure variables. Our findings suggest that ensuring forest tract connectivity, between the altitudinal extremes of the species' range at the north-western flanks of the Pichincha volcano, might be crucial for survival of the species during its annual cycle. However, non-metric multidimensional scaling (NMDS) indicates that Black-breasted Puffleg and the Gorgeted Sunangel do not overlap spatially, but this finding is not conclusive considering our field observations. © 2014 BirdLife International.

No Thumbnail Available
Publication

Recent diversification in the high Andes: Unveiling the evolutionary history of the Ecuadorian hillstar, Oreotrochilus chimborazo (Apodiformes: Trochilidae)

2021 , Bonaccorso E. , Rodríguez-Saltos C.A. , Freile J.F. , Peñafiel N. , Rosado-Llerena L. , Oleas Gallo, Nora Helena

Studying the genetic signatures of evolutionary diversification in young lineages is among the most promising approaches for unveiling the processes behind speciation. Here, we focus on Oreotrochilus chimborazo, a high Andean species of hummingbird that might have experienced rapid diversification in the recent past. To understand the evolution of this species, we generated a dataset of ten microsatellite markers and complementary data on morphometrics, plumage variation and ecological niches. We applied a series of population and coalescent-based analyses to understand the population structure and differentiation within the species, in addition to the signatures of current and historical gene flow, the location of potential contact zones and the relationships among lineages. We found that O. chimborazo comprises three genetic groups: one corresponding to subspecies O. c. chimborazo, from Chimborazo volcano and surroundings, and two corresponding to the northern and southern ranges of subspecies O. c. jamesonii, found from the extreme south of Colombia to southern Ecuador. We inferred modest levels of both contemporary and historical gene flow and proposed the location of a contact zone between lineages. Also, our coalescent-based analyses supported a rapid split among these three lineages during the mid-to-late Holocene. We discuss our results in the light of past and present potential distributions of the species, in addition to evolutionary trends seen in other Andean hummingbirds. © 2021 The Linnean Society of London, Biological Journal of the Linnean Society.