Repository logo
  • English
  • Español
  • Log In
    Have you forgotten your password?
Universidad Tecnológica Indoamérica
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • Researchers
  • Statistics
  • Investigación Indoamérica
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publications
  4. Machine learning approach to forecasting urban pollution
 
Options

Machine learning approach to forecasting urban pollution

Journal
2016 IEEE Ecuador Technical Chapters Meeting, ETCM 2016
Date Issued
2016
Author(s)
Rybarczyk Y.
Zalakeviciute R.
Universidad Indoamérica
Type
Conference Paper
DOI
10.1109/ETCM.2016.7750810
URL
https://cris.indoamerica.edu.ec/handle/123456789/9118
Abstract
This work addresses the question of how to predict fine particulate matter given a combination of weather conditions. A compilation of several years of meteorological data in the city of Quito, Ecuador, are used to build models using a machine learning approach. The study presents a decision tree algorithm that learns to classify the concentrations of fine aerosols, into two categories (>15μg/m3 vs. <15μg/m3), from a limited number of parameters such as the level of precipitation and the wind speed and direction. Requiring few rules, the resulting models are able to infer the concentration outcome with significant accuracy. This fundamental research intends to be a preliminary step in the development of a web-based platform and smartphone app to alert the inhabitants of Ecuador's capital about the risk to human health, with potential future application in other urban areas. © 2016 IEEE.
Subjects
  • Clothing disposition;...

Views
3
Acquisition Date
Aug 15, 2025
View Details
google-scholar
Downloads
Logo Universidad Tecnológica Indoamérica Hosting and Support by Logo Scimago

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback