Repository logo
  • English
  • Español
  • Log In
    Have you forgotten your password?
Universidad Tecnológica Indoamérica
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • Researchers
  • Statistics
  • Investigación Indoamérica
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publications
  4. Direct Color Observation of Light-Driven Molecular Conformation-Induced Stress
 
Options

Direct Color Observation of Light-Driven Molecular Conformation-Induced Stress

Journal
Small Methods
Date Issued
2022
Author(s)
Pujol-Vila F.
Escudero P.
Universidad Indoamérica
Güell-Grau P.
Pascual-Izarra C.
Villa R.
Alvarez M.
Type
Article
DOI
10.1002/smtd.202101283
URL
https://cris.indoamerica.edu.ec/handle/123456789/8517
Abstract
Although usually complex to handle, nanomechanical sensors are exceptional, label-free tools for monitoring molecular conformational changes, which makes them of paramount importance in understanding biomolecular interactions. Herein, a simple and inexpensive mechanical imaging approach based on low-stiffness cantilevers with structural coloration (mechanochromic cantilevers (MMC)) is demonstrated, able to monitor and quantify molecular conformational changes with similar sensitivity to the classical optical beam detection method of cantilever-based sensors (≈4.6 × 10–3 N m–1). This high sensitivity is achieved by using a white light and an RGB camera working in the reflection configuration. The sensor performance is demonstrated by monitoring the UV-light induced reversible conformational changes of azobenzene molecules coating. The trans-cis isomerization of the azobenzene molecules induces a deflection of the cantilevers modifying their diffracted color, which returns to the initial state by cis-trans relaxation. Interestingly, the mechanical imaging enables a simultaneous 2D mapping of the response thus enhancing the spatial resolution of the measurements. A tight correlation is found between the color output and the cantilever's deflection and curvature angle (sensitivities of 5 × 10–3 Hue µm–1 and 1.5 × 10–1 Hue (°)–1). These findings highlight the suitability of low-stiffness MMC as an enabling technology for monitoring molecular changes with unprecedented simplicity, high-throughput capability, and functionalities. © 2021 Wiley-VCH GmbH.
Subjects
  • Accreditation; networ...

Views
5
Acquisition Date
Dec 16, 2025
View Details
google-scholar
Downloads
Logo Universidad Tecnológica Indoamérica Hosting and Support by Logo Scimago

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback