English
Español
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
Research Outputs
Projects
Researchers
Statistics
Investigación Indoamérica
English
Español
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
CRIS
Publications
Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance
Export
Statistics
Options
Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance
Journal
Education Sciences
Date Issued
2023
Author(s)
Pacheco-Mendoza S.
Guevara Maldonado, César Byron
Centro de investigación en Mecatrónica y Sistemas Interactivos
Mayorga-Albán A.
Fernández-Escobar J.
Type
Article
DOI
10.3390/educsci13100990
URL
https://cris.indoamerica.edu.ec/handle/123456789/8215
Abstract
This research work evaluates the use of artificial intelligence and its impact on student’s academic performance at the University of Guayaquil (UG). The objective was to design and implement a predictive model to predict academic performance to anticipate student performance. This research presents a quantitative, non-experimental, projective, and predictive approach. A questionnaire was developed with the factors involved in academic performance, and the criterion of expert judgment was used to validate the questionnaire. The questionnaire and the Google Forms platform were used for data collection. In total, 1100 copies of the questionnaire were distributed, and 1012 responses were received, representing a response rate of 92%. The prediction model was designed in Gretl software, and the model fit was performed considering the mean square error (0.26), the mean absolute error (0.16), and a coefficient of determination of 0.9075. The results show the statistical significance of age, hours, days, and AI-based tools or applications, presenting p-values < 0.001 and positive coefficients close to zero, demonstrating a significant and direct effect on students’ academic performance. It was concluded that it is possible to implement a predictive model with theoretical support to adapt the variables based on artificial intelligence, thus generating an artificial intelligence-based mode. © 2023 by the authors.
Subjects
antase; infrared spec...
Views
3
Acquisition Date
Nov 21, 2024
View Details
google-scholar
View Details
Downloads
View Details