Repository logo
  • English
  • Español
  • Log In
    Have you forgotten your password?
Universidad Tecnológica Indoamérica
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • Researchers
  • Statistics
  • Investigación Indoamérica
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publications
  4. A Hybrid GAS-ATT-LSTM Architecture for Predicting Non-Stationary Financial Time Series
 
Options

A Hybrid GAS-ATT-LSTM Architecture for Predicting Non-Stationary Financial Time Series

Journal
Mathematics
ISSN
2227-7390
Date Issued
2025
Author(s)
Kevin Astudillo
Miguel Flores
Mateo Soliz
Guillermo Ferreira
Varela Aldas, José
Centro de investigación en Mecatrónica y Sistemas Interactivos
Type
journal-article
DOI
10.3390/math13142300
URL
https://cris.indoamerica.edu.ec/handle/123456789/9271
Abstract
This study proposes a hybrid approach to analyze and forecast non-stationary financial time series by combining statistical models with deep neural networks. A model is introduced that integrates three key components: the Generalized Autoregressive Score (GAS) model, which captures volatility dynamics; an attention mechanism (ATT), which identifies the most relevant features within the sequence; and a Long Short-Term Memory (LSTM) neural network, which receives the outputs of the previous modules to generate price forecasts. This architecture is referred to as GAS-ATT-LSTM. Both unidirectional and bidirectional variants were evaluated using real financial data from the Nasdaq Composite Index, Invesco QQQ Trust, ProShares UltraPro QQQ, Bitcoin, and gold and silver futures. The proposed model’s performance was compared against five benchmark architectures: LSTM Bidirectional, GARCH-LSTM Bidirectional, ATT-LSTM, GAS-LSTM, and GAS-LSTM Bidirectional, under sliding windows of 3, 5, and 7 days. The results show that GAS-ATT-LSTM, particularly in its bidirectional form, consistently outperforms the benchmark models across most assets and forecasting horizons. It stands out for its adaptability to varying volatility levels and temporal structures, achieving significant improvements in both accuracy and stability. These findings confirm the effectiveness of the proposed hybrid model as a robust tool for forecasting complex financial time series.
Views
5
Acquisition Date
Aug 14, 2025
View Details
google-scholar
Downloads
Logo Universidad Tecnológica Indoamérica Hosting and Support by Logo Scimago

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback