Understanding how different virtual reality (VR) game genres modulate physiological arousal is crucial for designing emotionally adaptive immersive systems. This study introduces a novel experimental framework combining high-resolution Skin Conductance Response (SCR) data and neural predictive modeling to compare emotional activation across horror, skill-based, and exercise VR games. Using Galvanic Skin Response (GSR) sensors, we recorded phasic peaks in SCR from 25 university-aged participants during gameplay sessions with controlled exposure times and standardized transitions. However, given the minimal difference relative to the large variability, this observation should be considered preliminary and specific to the tested games and cohort. A feed-forward neural network was developed to forecast individual arousal levels based solely on genre-induced features, achieving strong predictive performance. This dual contribution empirical genre comparison and lightweight predictive modeling offers a scalable tool for integrating emotional responsiveness into VR systems without continuous biosignal monitoring. The findings not only advance the state of the art in affective computing but also open new avenues for therapeutic, educational, and entertainment applications grounded in physiological adaptation