Repository logo
  • English
  • Español
  • Log In
    Have you forgotten your password?
Universidad Tecnológica Indoamérica
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • Researchers
  • Statistics
  • Investigación Indoamérica
  • English
  • Español
  • Log In
    Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publications
  4. Enhancing feature learning of hyperspectral imaging using shallow autoencoder by adding parallel paths encoding
 
Options

Enhancing feature learning of hyperspectral imaging using shallow autoencoder by adding parallel paths encoding

Journal
Scientific Reports
ISSN
2045-2322
Date Issued
2025
Author(s)
Bibi Noor Asmat
Hafiz Syed Muhammad Bilal
M. Irfan Uddin
Faten Khalid Karim
Samih M. Mostafa
Varela Aldas, José
Centro de Investigación de Ciencias Humanas y de la Educación
Type
journal-article
DOI
10.1038/s41598-025-01758-w
URL
https://cris.indoamerica.edu.ec/handle/123456789/9255
Abstract
Conventional image formats have limited information conveyance, while Hyperspectral Imaging (HSI) offers a broader representation through continuous spectral bands, capturing hundreds of spectral features. However, this abundance leads to redundant information, posing a computational challenge for deep learning models. Thus, models must effectively extract indicative features. HSI’s non-linear nature, influenced by environmental factors, necessitates both linear and non-linear modeling techniques for feature extraction. While PCA and ICA, being linear methods, may overlook complex patterns, Autoencoders (AE) can capture and represent non-linear features. Yet, AEs can be biased by unbalanced datasets, emphasizing majority class features and neglecting minority class characteristics, highlighting the need for careful dataset preparation. To address this, the Dual-Path AE (D-Path-AE) model has been proposed, which enhances non-linear feature acquisition through concurrent encoding pathways. This model also employs a down-sampling strategy to reduce bias towards majority classes. The study compared the efficacy of dimensionality reduction using the Naïve Autoencoder (Naïve AE) and D-Path-AE. Classification capabilities were assessed using Decision Tree, Support Vector Machine, and K-Nearest Neighbors (KNN) classifiers on datasets from Pavia Center, Salinas, and Kennedy Space Center. Results demonstrate that the D-Path-AE outperforms both linear dimensionality reduction models and Naïve AE, achieving an Overall Accuracy of up to 98.31% on the Pavia Center dataset using the KNN classifier, indicating superior classification capabilities.
Views
3
Acquisition Date
Jul 31, 2025
View Details
google-scholar
Downloads
Logo Universidad Tecnológica Indoamérica Hosting and Support by Logo Scimago

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback