English
Español
Log In
Email address
Password
Log in
Have you forgotten your password?
Communities & Collections
Research Outputs
Projects
Researchers
Statistics
Investigación Indoamérica
English
Español
Log In
Email address
Password
Log in
Have you forgotten your password?
Home
CRIS
Publications
A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends
Export
Statistics
Options
A Survey of Deep Learning Based NOMA: State of the Art, Key Aspects, Open Challenges and Future Trends
Journal
Sensors
Date Issued
2023
Author(s)
Mohsan S.A.H.
Li Y.
Shvetsov A.V.
Varela Aldas, José
Centro de Investigación de Ciencias Humanas y de la Educación
Mostafa S.M.
Elfikky A.
Type
Review
DOI
10.3390/s23062946
URL
https://cris.indoamerica.edu.ec/handle/123456789/8258
Abstract
Non-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation (5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system’s capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. However, the practical deployment of NOMA is hindered by the inflexibility caused by the offline design paradigm and non-unified signal processing approaches of different NOMA schemes. The recent innovations and breakthroughs in deep learning (DL) methods have paved the way to adequately address these challenges. The DL-based NOMA can break these fundamental limits of conventional NOMA in several aspects, including throughput, bit-error-rate (BER), low latency, task scheduling, resource allocation, user pairing and other better performance characteristics. This article aims to provide firsthand knowledge of the prominence of NOMA and DL and surveys several DL-enabled NOMA systems. This study emphasizes Successive Interference Cancellation (SIC), Channel State Information (CSI), impulse noise (IN), channel estimation, power allocation, resource allocation, user fairness and transceiver design, and a few other parameters as key performance indicators of NOMA systems. In addition, we outline the integration of DL-based NOMA with several emerging technologies such as intelligent reflecting surfaces (IRS), mobile edge computing (MEC), simultaneous wireless and information power transfer (SWIPT), Orthogonal Frequency Division Multiplexing (OFDM), and multiple-input and multiple-output (MIMO). This study also highlights diverse, significant technical hindrances in DL-based NOMA systems. Finally, we identify some future research directions to shed light on paramount developments needed in existing systems as a probable to invigorate further contributions for DL-based NOMA system. © 2023 by the authors.
Subjects
adolescent; self-inju...
Scopus© citations
26
Acquisition Date
Jun 6, 2024
View Details
Views
2
Acquisition Date
Nov 23, 2024
View Details
google-scholar
View Details
Downloads
View Details