2022 , Cruz J. , Topon Visarrea, Blanca , Caceres L.
The automotive industry is innovating new materials to replace environmentally harmful products with new technologies. An alternative is the use of polymeric compounds derived from biological sources from natural fibers, which generate a low carbon footprint, limiting environmental pollution and waste management problems. The components forming part of a vehicle must meet strict requirements, and the appropriate selection of materials that withstand extreme conditions is therefore necessary. An important element within a vehicle is the crankcase of a motor, which is located at the bottom and aims to provide protection and rigidity to the engine, in addition to housing the oil and the mechanical components thereof. That is why this research proposes the design of an automotive crankcase based on biodegradable materials made of polyester and cabuya fiber. In order to verify the functionalities, a simulation was carried out in SolidWorks, identifying that it complies with similar characteristics to those of a commercial crankcase in terms of efforts and workloads. The engineered crankcase weighs 3.26 kg, is low-corrosion, has 45.42 psi of maximum effort and a strain of 2,024 e-3 in., plus 44% less cost than a commercial crankcase. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.