Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Mobile Manipulator for Hospital Care Using Firebase

2022 , Varela Aldas, José , Buele, Jorge , Guerrero-Núñez S , Andaluz V.H.

The COVID-19 pandemic has shown that the use of the technology in medicine is no longer a luxury, but a necessity. The use of the robotics in the treatment of diseases and physical therapies is limited in Latin America due to the high acquisition and maintenance costs. This document proposes the design, development, and evaluation of a robotic system for the guided monitoring of patients, through remote control using a mobile application. Within the methodology, four phases were proposed: planning, design, development, and evaluation. The 3D design is done using the Tinkercad software, which facilitates the construction of the pieces using 3D printing technology. The ESP32 board is the main element that receives the signals from the sensors and controls the actions of the actuators through the orders received from Firebase. For the development of the application, App inventor is used, building a friendly and easy-to-use interface. To validate this proposal, experimental tests were carried out with two patients in a medical center. In addition, a parameter compliance questionnaire was applied to the robot, obtaining a score of 92.6%, and the mobile application obtained 72.5% in the usability test. All this confirms an efficient care proposal, with a reduced investment. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Teaching stem competencies through an educational mobile robot

2020 , Varela Aldas, José , Buele, Jorge , Jadán Guerrero, Janio , Andaluz V.H.

The STEM (Science-Technology-Engineering-Mathematics) competences have taken the classroom of new generations, due to the need to instill interest in technical sciences and promote the careers of the future. In underdeveloped countries, free access to technology is limited by the scarcity of economic resources, for this it is required low-cost tools that facilitate better multidisciplinary learning. This work presents the implementation of an educational mobile robot to teach STEM competencies; the physical structure has been designed using 3D modeling and printing in PLA. The electronic system presented in this work is based on the Arduino embedded card that connects distance, weight, temperature and color sensors, two DC motors, and an LCD screen. In addition, the mobile robot has Bluetooth communication to connect it to external devices. The interaction with the user (student) is done through a mobile application and an HMI that is displayed on a personal computer. The robot’s features allow the measurement of physical variables, conversion of magnitudes, analysis of the operation of sensors and actuators, and the use of control interfaces. Experimental performance tests are carried out by individuals with an average age of 12 years (K-12), who are subjected to a learning test before and after applying this proposal. Finally, usability tests are carried out on teachers to validate the system developed. © Springer Nature Switzerland AG 2020.